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Results of Current Research

1) The verification of LAWS beam alignment in space can be achieved by a measurement of heterodyne

efficiency using the surface return. Due to the statistical nature of the return signal, about 40 shots will be

required for a good test. This verification method does not require knowledge of the backscatter

coefficient of the surface, the power transmitIed, the atmospheric attenuation, or the detector gain. The

crucial element is a direct detection signal that can be identified for each surface return. This should be

satisfied for LAWS but will not be satisfied for descoped LAWS. These results were presented at the

Coherent Laser Radar Meeting in Paris. The behavior of estimates for heterodyne efficiency in the near-

field (ground based testing of LAWS) were also determined. For the actual LAWS optical geometry, the

required sensitivity is not available. A focused geometry is requited to test the space based system.

2) The performance of algorithms for velocity estimation can be described with two basic parameters: the

number of coherently detected photo-electrons per estimate and the number of independent signal sam-

ples per estimate. For low signal levels, the fraction of bad estimates is required to describe performance.
The fraction of bad estimates is mainly a function of the number of effective photo-electrons per estimate

and has little dependence on the number of independent samples per estimate; is independent of the esti-

mator used; and has a slight dependence on the velocity space searched.

3) The average error of spectral domain velocity estimation algorithms are bounded by a new periodo-

gram Crarner-Rao Bound. Comparison of the periodogram CRB with the exact CRB indicates a factor of

two improvement in velocity accuracy is possible using non-spectral domain estimators. This improve-

ment has been demonstrated with a maximum-likelihood estimator.

4) The comparison of velocity estimation algorithms for 2 and 10 micron coherent lidar was performed by

assuming all the system design parameters are fixed (range to target, telescope aperture, detector quantum

efficiency, heterodyne efficiency, perfect beam alignment, optical element efficiency, laser pulse energy,

atmospheric attenuation, range resolution, observation time per estimate, velocity search space) and the

signal statistics are dominated by a 1 m/s rms wind fluctuation over the range gate. Then the quality of

the data product is only a function of the wavelength dependence of the backscatter coefficient [i. For

I_, -1 the number of photons collected per estimate is the same and a 10 micron system has better data

quality because the fraction of bad estimates at low signal levels is less than for the 2 micron lidar. For

[l,,_X-2 the signal to noise ratio is the same and the 2 micron lidar has better data quality. The two systems

have similar data quality when [_X -1"3. These results agree with the GE and TRW reports.

5) The beam alignment requirements for 2 micron are much more severe than for a 10 micron lidar. The

effects of the random backscattered field on estimating the alignment error is a major problem for space

based lidar operation, especially if the heterodyne efficiency cannot be estimated. This is a sever handi-

cap for 2 micron coherent lidars because the beam alignment must be changed by 5-6 microradians per
minute due to variations in orbit height and 6 microradians of misalignment corresponds to more than 20

dB loss in signal power.
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6) For LAWS, the biggest science payoff would result from a short transmitted pulse, on the order of 0.5

microseconds instead of 3 microseconds. The advantages are

a) 50-100 meter range resolution in the boundary layer, thus providing data of great interest to atmos-

pheric scientists.

b) More efficient laser design for both CO2 and solid state.

c) QUICK LAWS will only measure the boundary layer. This design is ideal for QUICK LAWS and can

be scaled to full LAWS with minimal changes.

d) For conditions of higher backscatter, the 50 m range resolution will permit useful measurements of

wind statistics that are essential for optimal design of velocity estimators.

e) A short pulse will permit better velocity estimation algorithms because the statistics of the signal will

be determined by the transmitted pulse (which is known) instead of the velocity fluctuations over the

sensing volume of the pulse (which are unknown and difficult to estimate).

f) Better measurements near clouds and the surface will be possible.

The disadvantage are:

a) The velocity accuracy in the regions of low backscatter with 1 km height resolution will be about 1.5-

2 m/s.

b) A design of a high-energy short pulse C02 laser would be difficult to verify with the bread-board
laser.

7) The numerically errors for simulation of laser propagation in the atmosphere have been determined as

a joint project with the University of California, San Diego. Useful scaling laws were obtained for Kol-

mogorov atmospheric refractive turbulence and a atmospheric refractive turbulence characterized with an

inner scale. This permits verification of the simulation procedure which is essential for the evaluation of

the effects of refractive turbulence on coherent Doppler lidar systems.

8) The analysis of 2 micron Doppler lidar data from Coherent Technologies, Inc. (CTI) has demonstrated

many of the advantages of doppler lidar measurements of boundary layer winds. The estimation error for

a single shot with 50 meter range resolution has been estimated at 0.65 m/s., which is within 40% of the

ideal performance of the Cramer-Rao Bound. The effects of wind shear and wind turbulence over the

pulse volume are probably the dominant source of the reduced performance.

9) The effects of wind shear and wind turbulence on the statistical description of doppler lidar data has

been derived and calculated. This is the first analysis for the single-shot statistics which are required for

most Doppler lidar applications. The data is non-stationary and new algorithms are required to take full

advantage of real Doppler lidar data. The effects of wind turbulence over the range resolution cell are

noticeable for typical LAWS parameters. The effects are more pronounced in the planetary boundary

layer. The effects of wind shear and wind turbulence are more pronounced for 2 microns than 10
microns.
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Future Work

1) Determine the ability of velocity estimation algorithm's to identify which estimates are good when the
signal is low.

2) Include velocity fluctuations and wind shear in velocity estimators for LAWS.

3) Include the estimation of signal parameters like signal power and spectral width in velocity estimators.

4) Characterize the performance of velocity estimators for better OSSIE's.

5) Investigate beam alignment techniques for LAWS including the random nature of the received signals.

6) Collect information about surface return statistics and their effects on beam alignment.

7) Collect information about the wind statistics and their effects on velocity estimation.
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Abstract- The performance of mean-frequency estimators for Doppler radar/lidar measurements of winds
is presented in terms of two basic parameters: • the ratio of the signal energy per estimate to the spectral
noise level and f2 which is proportional to the number of independent samples per estimate. For fixed
and f2, the the Cramer-Rao Bound (theoretical best performance) for unbiased estimators of mean-

frequency (normalized by the spectral width of the signal), signal power, and spectral width, are essen-
tially independent of the number of data samples M. For large _, the estimators of mean-frequency are
unbiased and the performance is independent ofM. The spectral domain estimators and covariance based
estimators are bounded by the approximate periodogram Cramer-Rao Bound. The standard deviation of
the Maximum-Likelihood estimator approaches the exact CRB, which can be more than a factor of two

better than the performance of the spectral domain estimators or covariance based estimators for typical
f2. For small • the estimators are biased due to the effects of the uncorrelated noise (white noise) which

results in uniformly distributed "bad" estimates. The fraction of bad estimates is a function of • and M
with weak dependence on the parameter f2. Simple empirical models describe the standard deviation of

the good estimates and the fraction of bad estimates. For Doppler lidar and for large _, better perfor-
mance is obtained by using many low energy pulses instead of one pulse with the same total energy. For
small q), the converse is true.

1. Introduction

Measurement of wind fields using Doppler radar have been routinely performed for many years.

The design and operation of Doppler radar is reviewed by Doviak and Zrnic (1984, 1993). The optical
counterpart to Doppler radar, coherent Doppler lidar, has become more important with the development
of efficient C02 [Bilbro et al., 1986; Petheram et al., 1989; Post and Cupp, 1990; Pearson and Rye, 1992;
Gal-chen et al., 1992] and solid state lidars [Kavaya et al, 1992; Henderson et al., 1992, 1993]. The
scatterers for Doppler radar are refractive index fluctuations, hydrometeors, and insects. The scatterers for

Dopper lidar are atmospheric aerosol particles. Doppler radar data is generated using a sequence of many
pulses, usually separated by 0.5-5 msec. Doppler lidar data is produced with a single pulse which permits
many more estimates in a given time. The statistical description of the data is the same (ignoring ground
clutter for radar) because both signals are produced by the super-position of many randomly phased scat-
tered fields. Both of these instruments estimate the radial velocity of the scatterers from the Doppler fre-

quency or mean-frequency of the signal by using various estimators.

Most mean-frequency estimators are either spectral domain or covariance estimators, [Levin. 1965;
Zrnic, 1979; Mahapatra and Zmic, 1983; Miller and Rochwarger, 1972; Doviak and Zmic, 1984, 1993;
May and Strauch, 1989; May et al., 1989; Rye and Hardesty, 1993a,b,c; Sirmans, and Bumgamer, 1975],
i.e., they estimate the mean-frequency of the weather signal using estimates of the spectrum or estimates
of the covariance [see also Kay and Marple, 1981; Marple, 1987].

The ideal performance of an unbiased estimator is given by the Cramer-Rao Bound (CRB) [Hel-
strom, 1968; Van Trees, 1968; Schaff, 1991; Frehlich, 1993a]. If an unbiased estimator approaches the
CRB, it is a Maximum-Likelihood (ML) estimator. Approximate calculations of the CRB have been dis-
cussed by Whittle (1953), Levin (1965), Zmic (1979),Rye and Hardesty, (1993a,b). These approxima-
tions are based on the spectrum of the signal, and therefore require a sufficiently long data sequence for

l. Now atBEIP, National Institute of Health, Bethesda. MD, 20892

Revised September 22, 1993



2

the spectrum to be well defined[seeMarple,(1987)fora discussionof the effectsof finitedataand

discretesampling].The calculationoftheexactCRB has been discussedby Frehlich(1993a)who intro-

duced an approximateCRB basedon theaverageperiodograminsteadofthespectrum.We willcompare
the performance of various mean-frequency estimators to the exact CRB and the periodograrn CRB. The
CRB and the performance of mean-frequency estimators depend on the parameters of the data. The sys-
tem parameters are chosen to emphasize the most important physical mechanisms of the problem. This
reduces the parameter space to two basic variables: _ the ratio of the signal energy per estimate to the

spectral level of the noise and fl which is proportional to the number of independent samples per esti-
mate. (For Doppler lidar _ is also the number of effective photo-electrons coherently detected per esti-
mate). For fixed • and fl, the number of data points M per estimate has little effect on performance,
especially for large _. This simplifies the design and analysis of Doppler radar/lidar systems.

The performance of mean-frequency estimators has been described by it's standard deviation [Zrnic,
1979; Sirmans, and Bumgarner, 1975; Mahapatra and Zmic, 1983; Doviak and Zmic, 1984, 1993; May
and Strauch, 1989; May et al., 1989; Rye and Hardesty, 1993a,b] and the number of estimates that fall
within a given region [Anderson, 1991; Rye and Hardesty, 1993a]. We describe the performance of
mean-frequency estimators using an empirical model for the Probability Density Function (PDF) of the
estimates. This will permit a meaningful comparison to the CRB when the estimates are biased due the

effects of the uncorrelated noise that produces uniformly distributed "bad" estimates at low signal levels.

For Doppler lidar, Rye and Hardesty, (1993a) considered the question: are many pulses of low
energy better than one pulse of the same total energy? This question will be addressed for the unbiased
and biased regimes.

2. Basic System Parameters

Doppler radars typically employ a complex receiver (mixers that convert the radio signals to com-
plex data) to measure positive and negative velocities [Doviak and Zmic, 1984, 1993]. We consider com-
plex data throughout this paper with specific references to the case of real data. Doppler radar or Doppler
lidar data is well approximated as a zero-mean complex Gaussian random vector z with elements zk
which satisfy <zk zt >=0, where <,> denotes ensemble average [Doviak and Zmic, 1984, 1993; Helstrom,
1968]. The PDF of the data is Gauusian and defined by the covariance matrix R with elements

R_=<zkz;> (1)

We assume the signal model

zk = sk exp(2JrikfTs )+nk (2)

where f [Hz ] is the mean frequency, Ts [sec] is the sampling interval, the random signal sk is indepen-
dent of the uncorrelated noise nk where

<nknj >=O, <nknT >-._ Sk_j , (3)

N=< I n 12> is the average noise power, In I denotes the modulus of the complex variable n, and 8 is the
Kronecker delta symbol.

For Doppler lidar, the mean frequency f is defined by the radial component of the velocity of the
scatterers in the center of the sensing volume of a given range gate [Frehiich, 1993b]. The mean-
frequency is well defined for a single shot for any random velocity field and random collection of scatter-

ers. For Doppler radar, the mean-frequency is related to the spectrurn of the wind field and sensing
volume of the pulse [Doviak and Zmic, 1984, 19931. For both Doppler radar and lidar, the signal model
of Eq. (2) is valid. An estimate of the mean-frequency is produced with M data samples which defines
the total observation time per estimate as MTs [sec ].

The average noise power is set to unity to simplify the results. The data is assumed stationary, i.e.,
R_--Rk_ t and the covariance reduces to

Rk = SNR Pk exp[2rcifkTs ]+8, (4)

where SNR=S/N is the Signal-to-Noise Ratio, S=< Is 12> is the average signal power, and Pk is the nor-
malized covariance of the signal. The performance of mean frequency estimators will be presented for
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the Gaussian covariance model of Zmic (1979)

Ok = exp[-2n2(wkTs )2] (5)

where w [Hz ] is the spectral width of the signal. With this model, the data is fully characterized by the
system parameters (]" ,S ,w) as well as the experimental parameters M and Ts . For Doppler lidar, this sig-
nal model is exact [Frehlich, 1993b] if there are no wind fluctuations over the sensing volume and a
Gaussian laser pulse with temporal power profile Pt. (t)[W] given by

Pt, (t)=exp(-t 2/02) (6)

is transmitted through a telescope apemare where a[sec ] is

o=l/(4g w). (7)

The Full-Width at Half-Maximum (FWHM) At [sec] of the transmitter pulse is

At =2,_tl]_c. (8)

The lie Full Width of the signal covariance A'c[sec ], which defines the signal correlation time (see Fig.
1), is

Ax= _ = 4o. (9)
n'w

For a Doppler Lidar operating under ideal conditions (the detector noise is dominated by the local
oscillator shot noise, the shot noise is determined by the Poisson statistics of the detected photons, and
there is no atmospheric refractive turbulence, Frehlich and Kavaya, 1991) the SNR is given by

eD(t)
SNR (t)= _rlH(t) (10)

h vB

where Po (t) is the effective direct detection power measured by the detector, ntt (t) is the heterodyne
efficiency, h = 6.626 x 10-34[Js ] is Planck's constant, v[Hz] is the optical frequency, and B [Hz] is the
detector bandwidth. For ideal operation

_ rlQ 7a
SNR (t ) - _-_ jo. L (t-2R /c )[K (R)]2[](R )C (R)dR (11)

where 11Q[electrons/photon ] is the detector quantum efficiency, c [ms -!] is the speed of fight in a homo-
geneous atmosphere, K (R) is the dimensionless one-way irradiance extinction of the atmosphere at range
R [m ], _(R )[m-lsr -I] is the atmospheric aerosol backscatter coefficient, Pt. (t) is the pulse power profile

of the laser, and C (R) is the coherent responsivity of the Doppler lidar (lidar system dependence). The
term PI.(t-2R/c)[K(R)]Z_(R)C(R) describes the range weighting for the _NR. For many cases of
interest, the terms [K (R )]'[3(R )C (R) are constant over the range gate and the range weighting function is
given by the term Pt. (t-2R/c ) The FWHM Ar [m ] of the range weighting function for the Gaussian pulse
is then

Ar=c At /2 (12)

A simulation of Doppler Lidar data (Appendix A) and the range weighting function PL (t-2R/c ) is shown
in Fig. 1 for typical parameters of a 2 micron lidar. At time 2gsec the center of the pulse is located at
range 300m with a width At-. At a time 4 las later the pulse is situated at a range of 900 m. The range
resolution AR [m ] for an observation time MT s is defined as

AR ----Ar+Ap (13)

where zS_o[m ] is the distance the range weighting function travels during the observation th-ne, i.e.,

Ap=MTsc /2 . (14)

The temporal scale of the modulation of the signal corresponds to the time required for the pulse to travel
a distance Ar, after which time a new collection of independent atmospheric scatterers are illuminated by
the pulse (see Fig. 1).
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The periodogram of the data is defined as [Doviak and Zrnic, 1984, 1993; Marple, 1987]

T- M-I

P(m)=-_'[ Y'.akexp(-2x/km/M)l2 (15)
"" k,,O

and isshown inFig.I.Thisisan estimateforthespectnunatfrequenciesf =m Af where Af---I/(MTs)is

the frequencyresolution.The maximum frequencythatcan be observedwithoutaliasingistheNyquist
frequencyFN --MAf =I/Ts [forrealdataF#--I/(2Ts)].The frequencydomain estimationofthemean fre-

quencyf involvesextractingthelocationofthespectralfeatureof therandom periodogramcoefficients

(orany spectraldomain estimate)inthepresenceof random noise.Itisreasonabletoexpectthattheper-
formance of a frequencydomain estimatordepends on thestatisticsof the signaland noisearound the

spectralfeature.Ifone would increasethe samplingintervalTs by a factorof two and alsoreducethe

noisebandwidthby a factoroftwo tomatch thenew Nyquistfrequency,theperformanceofthespectral

domain mean frequencyestimatorwould be unchanged becausethestatisticsof theperiodogramaround

the spectral feature is unchanged. However, the frequency range that can be searched has been reduced by
a factor of two and the SNR has increased by a factor of two. Therefore, the SNR is not a convenient
parameter to characterize the signal strength.

A more useful parameter to describe the signal power for mean frequency estimation is the ratio of
the total signal energy per estimate E--SMT s to the spectral noise level No=NT s, i.e.,

¢,---E/No=SNR M (16)

(Notethatforrealdata,No=2NT s and O--.-SNRM/2). Thisisthebasicparameterused incommunication

and radarformatched filterestimationof known signalsin uncorrelatednoise[Helstrom,1968; Van

Trees,1968].For Dopplerlidarwithquantum limiteddetection(theadditivenoiseisdominatedby the

localoscillatorshotnoise),thisparameterhas a convenientphysicalinterpretation.Itiscommon practice
tosetthesamplingrateI/TsequaltothenoisebandwidthB. The SNR F-_I.(10)can thenbe writtenas

SNR (t)=Pa(t)_H (t)Ts (17)

where PR (t)=Po(t)/(hv)[photo--electrons/sec]isthedetectionrateofphoto-electrons.Therefore

q_'qHPR M Ts. (18)

Since'DRM Ts isthenumber of photo-electronsgeneratedper observationtimeMT s,• istheeffective

number ofphoto-electronscoherentlydetectedperobservationtime.For Dopplerradar,thisinterpretation

isnotvalidbecausequantum limiteddetectionisnot achieved.However, theinterpretationofEq. (16)is
meaningfulforDopplerradar.

The spectralwidthw iscommonly normalizedby theNyquistfrequencyFN=I/Ts. For fixedrange

resolution(fixedMTs), thisparameterchangeswiththesamplinginterval.A more convenientparameter
istheratioofthespectralwidthw tothefrequencyresolutionAf,

This parameter can be written as

where

F'_=w/Af --w M Ts (19)

_=-_-_MI- [In(2)/211/2 Ap (20)
_ Ar

MTs
MI= (21)

is defined as the number of independent sample.s of the signal in the observation lime MT s . The parame-
ter fl is also proportional to Ap/A,-', the number of pulse widths Ar contained in the distance Ap that the
pulse travels during the observation time, if there are no velocity fluctuations over the sensing volume of
the pulse that would increase the spectral width w. Using the parameters of Figure 1 we have MI=4.44,
which is approximately the number of modulated events displayed in the lidar signal. For Doppler Lidar
observations of uniform wind fields using a Gaussian pulse, the choice of one independent sample per
observation interval (Mi=l) produces D,=0.450 and Ap/Ar=2. Zmic 0979) investigated the number of
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independentsamplesperestimatein termsof thereductionof thevarianceof the estimates for signal
power. Zmic's effective number of independent samples is also proportional to t"l. The definition of Eq.
(21) is chosen as a visual description of the data and as a simple connection to the covariance function.
Since the choice of a definition for the number of independent samples per estimate is arbitrary, the

parameter fl will be used to represent this basic physical quantity.

The covariance of the data [Eqs. (4), (5)] can be written in terms of the new variables • and t, i.e.,

Rk = _7.exp[ -2rcEf_2k2/M2+2_i f--t'2k ]+_k • (22)
M W

The best performance of any unbiased estimator of the signal parameters is given by the Cramer-Rao

Bound (CRB). For fixed • and f_, the CRB of (Freltlich, 1993a) for estimation of the mean frequency
normalized by the spectral width w as a function of M are shown in Fig. 2. [The normalized variable

o//w is suggested by the functional form of Eq. (22)]. For sufficiently large M, the CRB for the normal-
ized mean frequency is independent of M for all the parameters fl. For larger t, the CRB becomes

independent of M when the extent of the signal spectrum is less than the Nyquist frequency, i.e., when
wT s <1/6 or M>6fL This condition is satisfied for any realistic problem. Since of/w is independent of
M, the CRB for mean frequency o/ is independent of M for fixed w. This implies that the total observa-
tion time per estimate MT s and range resolution is also fixed because D.--wMT s is fixed. The CRB for

mean frequency of is independent of M for fixed observation time MT s ( fixed range resolution) and
fixed w. This result was also obtained by Rye and Hardesty, (1993a) using approximate empirical
models for Levin's approximate CRB. The exact CRB verifies the accuracy of this statement. The CRB
for estimation of the average signal power S and the CRB for the estimation of the spectral width w are
also shown in Fig. 2. For both cases, the CRB is independent of M, provided that the spectral width is
less than the Nyquist frequency. Similar results are produced for other values of _. This result is excel-
lent motivation for the choice of • and f_ as the basic system parameters. Accurate calculations of the

CRB's of the signal parameters for very large M can be made using the more efficient calculation at
smaller M. For fixed MT s (fixed range resolution), the frequency resolution Af for the periodogram is
also fixed. For fixed _, t, and MT s, the satistics of the periodogram around the spectral peak will be
unchanged because the shape of the signal peak compared to the frequency resolution Af is unchanged.
This provides an intuitive explanation for the invariance of the CRB's for the estimation of the normal-
ized signal parameters. The low SNR analytic approximation to the CRB for mean frequency can be

written as o_/w 2 = 4._'_f_O 2 [Zmic, 1979, Eq. (A29)], which is independent of M. However, the high
SNR analytic approximation to the CRB becomes o_/w2= 12f22/M 3 [Zmic, 1979, Eq. (A28)], which is
not independent of M. It has been shown that the high SNR approximation to the CRB is not valid
[Frehlich, 1993a].

The radial component v[m/s] of the velocity of the atmospheric scatterers is related to the mean-

frequency f by v=_.f/2 and the velocity estimation error ov[m/s ]=_.of/2, where _.[m ] is the operating
wavelength. The velocity error is proportional to _. if o/ is independent of k, i.e., if • and fl are indepen-
dent of _. and MTs (range resolution) is fixed. For Doppler Lidar • is independent of k for fixed laser

power P_. if the backscatter coefficient [_.-l*,v [Eqs. (11), (16)]. f_ is independent of k if w is indepen-
dent of _., i.e., there are negligible velocity fluctuations over the sensing volume of the pulse and w is
determined by the transmitted pulse shape [Frehlich, 1993b]. Velocity error is then proportional to
wavelength for fixed MTs (fixed range resolution), fixed w, fixed power transmitted, and [l*-_.-l. This is
a convenient benchmark for system design and for some atmospheric conditions 13-_, -l [Srivastava et al.

1992]. Rye and Hardesty (1993a) found that Levin's approximate CRB for mean frequency estimation is
proportional to _.1/2 for fixed range resolution, fixed signal power, fixed maximum velocity, and fixed wTs
(the spectral width is determined by the velocity fluctuations over the sensing volume of the pulse).

3. Mean Frequency Estimators

For Doppler lidar with short pulses, the spectral width of the signal w will be determined by the
pulse and therefore known a priori [Frehlich, 1993b]. If a long pulse is transmitted, the effects of wind
shear and wind turbulence produce non-stationary data [Frehlich, 1993b]. For non-stationary data, spec-
tral domain and covariance based estimators are not rigorously defined and the Maximum Likelihood

estimators will produce the best performance. For a typical experiment, many pulses will be transmitted
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and the SNR will also be known if the atmosphere is stationary over the total observation time. The
mean-frequency estimators considered here will assume knowledge of the SNR and the spectral width w.
For typical Doppler radar operation, the spectral width is determined by the wind fluctuations in the sens-
ing volume, and must also be estimated. The pulse-pair algorithm does not require a priori knowledge.
All the other algorithms discussed in this section require knowledge of the SNR and spectral width w.

Pulse-Pair (PP)

A numerically efficient algorithm for mean frequency estimation is the Pulse-Pair (PP) estimator
given by [Miller and Rochwarger, 1972; Zrnic, 1979]

f = ---_1 arg [/_l) (23)
2roTs

where

/_k -- 1 M-I-k *E gi+k£i (24)
M-k i=o

is an unbiased estimate for Rk, the covariance at lag kTs with a fixed length of data.

Maximum Likelihood Estimator (ML)

The Maximum Likelihood (ML) estimator is the value of the unknown parameters that maximizes
the log-likelihood function [Helstrom, 1968, Van Trees, 1968], given by

L(f ,S,w)= =-z *r R-Ill ,S,w)z - In[lR(f,S,w)l]- M1n(_) (25)

where IR IdenotesthedeterminantofthematrixR. For thesignalmodel consideredhere IR_(J",S,w) Iis
independentoff. The simplestML estimatorformean frequencyf assumes knowledge of the signal

power S and thespectralwidthw. For thecovariancemodel ofEq. (4)[Zmic,1979],

Rfflff,S,w)= D_ (S,w)exp[2_ifTs(k - l)] (26)

where D(S ,w)=R--1(f=0,S,w). Inthiscase,theML estimatorfor.t"isthevalue/that maximizes

M-l
A

L l= _'. d,,,cos(2rcTsmf ) (27)
m=0

where

M.-m-l

d,,,= Y'. z;zk+.Dk,k+.(S,w) (28)
k=0 ,_

The ML estimatorcan be efficientlycalculatedusing theFast FourierTranst'orm(FFT) algorithmof

lengthMs >---Matdiscretefrequenciesf ---k/Ts/Ms.Note thattheML estimatorisnotgivenintermsof
an estimateforthecovariance.

Periodogram Maximum Likelihood Estimator (PML)

In the limit of large M, the DFT and periodogram coefficients/_(m ) become mutually macon'elated
and the Maximum Likelihood estimator for the mean frequency is the value off that maximizes the log-
likelihood function

M-l /_(m)

L (f,S,w)= -:4 P (m ,f,S,w) (29)

where [Doviakand Zmic, 1984,1993,Chap.5]

M-l

P(m) = </_(m)> = Ts _ Rtexp(-2_iTsml/M). (30)
t- (M-t)

[Levin (1965) and Rye and Hardesty (1993a,b) used this algorithm with the spectrum substituted for
P (m O¢ ,S ,w ). For small fl and large _, this approximation results in poorer performance, e.g., for D.-_.5
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and_>100 thevelocityerroris 15%largerthanthePMLestimator].ThePMLestimatoris numerically
more efficient when computed in the time domain. If the DFT coefficients are mutually uncorrelated and
statistically independent, then the inverse of the covariance matrix R is Toeplitz and has the form of Eq.
(26) where

1 M-l exp[2n/m (k - l)/M]
D ja(S ,w ) = -M ,_',a P (m ,f =O,S ,w ) (31)

Substituting this result in Eq. (28) produces the periodogram ML estimator (PML), which is also

equivalent to implementing Eq. (29) using the DFT algorithm. This estimator can be written in terms of
estimates for the covariance Rk because the matrix R-_ is Toeplitz [See Eq. (28)].

Time Series Model Estimators (MVYW)

Many spectral domain estimators have been proposed using models for the time series. These algo-
rithms are discussed by Marple (1987) and computer programs provided. The regressive spectral estima-

tor is given by

?'sOw
PAR (P J )-- p (32)

I 1+ _, ak exp(-2_ifkTs) 12
k--I

where the coefficients ak and p,, are determined from the estimates of the covariance of the data. The

orderp is an input parameter that must be selected.

Another time series algorithm introduced by Capon (1969) has been advocated by Anderson (1991)
for Doppler lidar parameter estimation. Marple (1987) calls this algorithm a Minimum Variance (MV)
estimator which can be written as

1 _ _ 1 (33)
t, (pJ)

For the spectral domain estimators, the mean-frequency .f is determined by the maximum value of the
spectral estimator. We have investigated the performance of the AR spectral estimator and the MV spec-
tral estimator using the Yule-Walker and Burg method for estimating the regressive coefficients and using
the order p that produced the best performance [smallest standard deviation of the good estimates (see
Section 4)] for fixed (O,fl,M). For large _, the best order for the AR and MV estimators was p =1, which

corresponds to the PP estimator [Rye and Hardesty, 1993b]. The MV estimator with the Yule-Walker
method (MVYW) produced the best overall performance.

4. Performance of Mean Frequency Estimators

The most useful description of the performance of an estimator is it's Probability Density Function
(PDF). For fixed Ts and in the limit of large M, if the ML estimator is unbiased, it approaches the ideal
performance of the CRB and t's PDF approaches a Gaussian distribution. The periodogram (or any spec-
tral estimator) of the random signal is random. For small • or SNR, there will be realizations where the
spectral feature of the signal is buried in the noise. Then, the spectral domain estimators for mean fre-
quency will choose the largest noise feature that mimics the signal. This behavior was first recognized
and analyzed by Shirakawa and Zmic, (1983) and Hardesty, (1986). This qualitative description of a
clump of localized good estimates around the true mean frequency sitting on a pedestal of uniformly dis-
tributed "bad" estimates has been observed in many other cases [Mahapatra and Zmic, 1983; May and

Strauch, 1989; Anderson, 1991; Rye and Hardesty, 1993a]. The PDF of the mean frequency estimators f
is therefore modeled as a Gaussian PDF centered on the true mean frequency f and a uniformly distri-

buted component of bad estimates over the frequency range (0,Ft¢ =l/Ts), which is written as

(1-b)T s
PDF (f)=bTs + exp[-(f -f )2/(2g 2)] (34)

42- g
where b is the fraction of bad estimates and g is the standard deviation of the good estimates (see also

Rye and Hardesty, 1993c). The PDF of the mean-frequency estimators is estimated by it's histogram with
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bin size Af. The parameters of the model PDF (b ,g) are determined by minimizing the mean-square-
difference between the histogram and the predicted histogram based on the model PDF. An example of
the histograms for 10000 estimates of the ML estimator and the PP estimator, the predicted histogram of
the best fit model parameters, and the model PDF are shown in Fig. 3. The ML estimator produces good
agreement with the model PDF. The PP estimator is a poorer fit to the model PDF when O<100. This is
due to the nonlinear interaction of the signal and noise.

The comparison of estimator performance with the CRB is complicated by the presence of the uni-
form distribution of bad estimates. If the model PDF is a good approximation then it provides a complete
statistical description of an estimator. For example, the ensemble average of the mean frequency estima-
tor.f is

lCrs

the true mean-frequency f. The mean-square-error of the estimator iswhich indicates a bias from
defined as

l/Ts

b (l_3fTs+3f2Ts2)+(l_b)g 2
<(f-f)2>=c'2= oS(f -f )2eOF(f )df - 3Ts 2

which has a minimum forfTs=0.5. The CRB for a biased estimator is given by [Helstrom, 1968]

<(f_f)2> > OB2=(_f>)2(I/2=(l_b)2(_/2

(36)

(37)

where or/2 is the CRB for an unbiased estimate off. The CRB for a biased estimate depends on the frac-
tion of bad estimates b which in turn depends on the estimator f. A comparison of different estimators
that includes the bias can be related to the CRB for unbiased estimates by dividing Eqs. (36) and (37) by
(1-b)2. From the modified Eq. (36), the adjusted standard deviation of the estimator error becomes

ac = a,/(1-b ) (38)

which is to be compared with the CRB t_/ for unbiased estimators.

An empirical model for the fraction of bad estimates b as a function of • for fixed fl and M is

b (_)=[ l+(O/b 0)_t]-r . (39)

In the previous section, it was shown that the CRB for estimation of the mean frequency f normalized by
the spectral width w was independent of the number of observation points M for fixed • and fL This

suggests the use of the parameter gN=g/w. An empirical functional form for this parameter is

glv (t_) = _[ l+(t_/ g 0)t]-8+kl. (40)

The simulation results shown in the following Figures were generated by averaging 10 simulations of
2000 realizations each for large _. As the number of good estimates declined at small *, the number of

realizations were increased to maintain the number of good estimates at approximately 2000. The stan-
dard deviation of the 10 estimates for b and gu =g/w were used to obtain the chi-squared best fit [Press et
al., 1986] for the parameters of the empirical models Eqs. (39) and (40).

The performance of the Maximum Likelihood estimator is shown in Fig. 4 for t'b=0.5. The simula-
tion results agree well with the best fit models Eqs. (39) and (40). For large _, the bias of the estimator is
small and the standard deviation of the good estimates g approaches the CRB. For small _, the com-
parison of the standard deviation t_c of the biased estimate to the CRB that includes the effect of the bias
is poor. This is a typical result for all the estimators we investigated. The CRB with the bias included [Eq.
(37)] is a poor indicator of estimator performance. The standard deviation of the good estimates g and

the fraction of the bad estimates b provide a complete description of the performance of mean-frequency
estimators when the model PDF defined by Eq. (34) is valid. For small O, the standard deviation of the
good estimates g is less than the CRB. This does not contradict the meaning of the CRB because in this
regime the estimates are biased and are not bounded by the CRB for unbiased estimates.
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Theperformanceof the periodogram maximum likelihood (PML) estimator is shown in Fig. 5 for
fb=0.5. The simulation results agree well with the best fit models Eqs. (39) and (40). When the estimates
are unbiased (@>-100), the performance is bounded by the periodogram CRB.

The performance of all the mean-frequency estimators considered here are shown in Fig. 6 for
fb=0.5 (typical Doppler lidar case) and in Fig. 7 for f_2.0 (typical Doppler radar case). The parameters
of the empirical models Eqs (39) and (40) are given in Table 1. All the spectral domain and covariance
based estimators are bounded by the periodogram CRB for @>-100 (unbiased estimates). For the best
estimators (ML,PML,AR,MV), the standard deviation of the good estimates g approaches w for small
and approaches a fraction of w (=1/10) for large @. This general feature produces a useful description of
mean-frequency accuracy in terms of the basic parameters @ and f_. The dependence of b with @ is
similar for the best estimators. The PDF of the PP estimator is a poor fit to the empirical model Eq. (34)
for @<-100 (see Fig. 3) and results in deviation from the other estimators. For _.5 and large @, more
than a factor of two improvement in mean-frequency accuracy is realized with the Maximum-Likelihood
estimator compared with the best spectral-domain and covariance based estimators.

The performance of the Maximum Likelihood estimator for M=32,64,128 is shown in Fig. 8 for
/2=0.5 and in Fig. 9 for I2=2. The standard deviation of the good estimates has little dependence on the
total number of data points M for _>10, i.e., the mean-frequency error is independent of the maximum
observable frequency FN for fixed range resolution and fixed signal energy per estimate. For fixed _, and
increasing M, the fraction of bad estimates b increases because there are more noise spikes that may be
larger than the true mean-frequency signal peak of the log-likelihood function.

5. Tradeoff Between Pulse Energy and Number of Pulses

Rye and Hardesty (1993b) posed an important question: is it better to use many pulses with low
energy or one pulse with the same total energy? For constant laser power and for the case where accumu-
lated data from many pulses approaches Levin's CRB, they showed that many low energy pulses were
better than one high energy pulse for narrow spectral width. This regime corresponds to large • where
there are no bad estimates. The performance of mean-frequency estimators for K pulses per estimate can
be compared to the single pulse case for fixed _. The data for each pulse is assumed statistically
independent. This is a good assumption for Doppler Lidar because the signal correlation time is of the
order of lilts and the interval between pulses is larger than lOmsec.

The Likelihood Function Lx for K statistically independent data vectors zn and fixed range resolu-
tion (fixed MT s ) is [Scharf, 1991]

K
*T

Lx (f ,Sx ,w ) = - K in[ IR(f ,Sx ,w ) I ] - KM In(re)-.- _, z,_ R -t (f ,SI¢ ,w ) zn (41)
n--I

where zr denotes the transpose of z and SK=S/K is the signal power for each pulse. The CRB for this
data set of K pulses is

o_ = of 2(Sx)/K (42)

where o/2(Sx) is the CRB for one pulse with signal power Sx. The CRB for the mean-frequency as a
function of the total number of pulses but with fixed total energy • is shown in Fig. 10. Multiple pulses
are better for _>-10 and smaller f_. The performance of the ML estimator [the value off that maxim-
izes Eq. (41)] for different K as a function of O is shown in Fig. 11 for t"_=0.5 and in Fig. 12 for f2=2. For
small _, the best performance is obtained by using one pulse. For large _, performance is improved by

dividing the total laser energy among many pulses. The effects are most pronounced for small fl. For
small _, concentrating all the energy into one pulse produces the optimal signal for identifying the good
estimates. For large O, there is no difficult identifying the good estimates and more pulses result in a
decrease in the mean-frequency error because each pulse produces a statistically independent estimate and

_eg 7rrSpalu_:as KTh;'2_{_3S_)eeS_ ld) (pSrXo)vCdhe_gmeSe;lfe°_t1V_r_Pi cart_dntoofth_ 21_ePhhaffv°7oa_ _el smLr_vl_

deviation of the good estimates g for all @.

6. Summary
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For the signal model of Eqs. (2), (4), and (5), the performance of mean-frequency estimators is con-
veniently presented in terms of two basic parameters: • the ratio of the signal energy per estimate to the
spectral noise level and [1 which is proportional to the number of independent samples per estimate. For
Doppler lidar, • is the number of coherently detected photo-electrons per estimate. For fixed • and f_,
the CRB's for unbiased estimates of the signal parameters are independent of the number of samples per
estimate M (Fig. 2). The PDF of a mean-frequency estimator is the best description of performance. For
the better estimators, the PDF can be accurately modeled as a Gaussian distribution function around the
true mean frequency and a uniformly distributed component of bad estimates (Fig. 3). This model
requires two parameters: the standard deviation of the good estimates g and the fraction of the estimates

b that are bad. The empirical functions Eqs. (39) and (40) provide a good approximation for g and b as a
function of • for fixed fl and M. The parameters of these empirical models are listed in Table 1 for some
common mean-frequency estimators. The fraction of bad estimates can be reduced by neglecting the esti-

mates that have low signal power (Rye and Hardest),, 1993c). Adaptive mean-frequency estimators have
also been proposed to reduce the detrimental effects of the fades in signal power [Dabas et al., 1993].

For large _: the estimates are unbiased, the standard deviation of the spectral domain and covari-
ance based estimates are bounded by the periodogram CRB (Figs. 6,7), and the standard deviation of the
ML estimator approaches the exact CRB (Fig. 4). For smaller G, the ML estimator has more than a factor
of two improvement in performance compared to previous estimators (Fig. 7). For _<-100, all the esti-
mators are biased due to the uniformly distributed bad estimates. For fixed M, the behavior of the fraction
of bad estimates b is almost a universal function of • with a weak dependence on ll (Figs. 6-9), i.e., the
better estimators (ML,PML,AR,MV) perform equally well in identifying the cases where the random sig-
nal is not buried in the random noise. For fixed • and f2, as M increases (Figs. 8,9), the fraction of bad
estimates increases because the random spectral feature of the signal must be identified among more noise
spikes. For _> 100 and fixed t'l, the standard deviation of the good estimates normalized by w is essen-
tially independent of M and for fixed range resolution and fixed signal energy, the standard deviation of
the mean frequency estimators are independent of the maximum observable frequency F_t. For fixed
range resolution, fixed spectral width, fixed transmitted pulse energy, and a backscatter coefficient [_-!
the velocity error is proportional to the operating wavelength 2t. The spectral width of the signal is con-
stant with operating wavelength when the wind fluctuations are negligible over the sensing volume of the
pulse. This is true for Doppler lidar with short pulse lengths and typical atmospheric conditions. For typi-
cal Doppler radar conditions, the spectral width of the fignal is determined by the wind fluctuations over
the sensing volume of the pulse. Then, the velocity error is approximately proportional to _)rz for fixed
range resolution and fixed signal energy (Rye and Hardesty, 1993a).

For Doppler lidar and for large _, it is better to transmit many low energy pulses instead of one
pulse with the same total energy, if the parameters of the process do not change during the measurement
interval. For small O, the converse is true (Figs. 11,12).

The behavior of the performance of mean-frequency estimators as a function of the two basic
parameters • and fl simplify Doppler Lidar design. In many cases, the range resolution of the measure-
ment is determined by the application. Assuming one independent velocity measurement per observation
time and small fluctuations of the wind field over the sensing volume of the pulse (w is determined by the
transmitted pulse profile and 0.=0.45) fixes the pulse length and observation time per estimate MT s . The

maximum search velocity v.,a=X/(2Ts) determines Ts and M. The velocity accuracy ov=_u:_/,/2 and the
fraction of bad estimates b is then a function of one parameter el,. To produce estimates with a small
number of bad estimates, q)>100, which determines the required pulse energy for a specified backscatter
coefficient.
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APPENDIX A: Simulation of Doppler Radar/Lidar Data
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Complex Doppler radar/lidar data with a specified covariance can be generated with a simple com-
puter algorithm. The complex Gaussian data vector z is produced by

Ms-I

zk = _, Y,, exp(2r_ink/Ms) (A1)
n=0

where y,, are zero mean complex Gaussian random variables with

<y. y,,, > = Y. _...,,I (A2)

and

1 Ms-i

Rk exp(-2nink /M s ) (A3)
Yn-MS k=o

where Rk is the desired covariance of the stationary data. The random vector z then has the properties
ti I

<zkzt > = Rk--t = <ZkZMs--t> (A4)

and the first points of the simulated data are correlated with the end points. Therefore, a simulation of
length Ms=2M is required to generate an independent realization of length M. The length Ms must be

long enough to ensure that all Yn are positive [see Eq. (A3)]. Zmic (1975) and Sirmans, and Bumgamer,
(1975) used this algorithm with Y. chosen to produce exact sampling of the spectrum instead of an exact
sampling of the covariance. For Doppler lidar, the covariance of the data is specified by the transmitted

pulse and lidar system parameters [Frehlich, 1993b].
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Figure Captions

Fig. 1 Simulation of Doppler lidar data for a 2 gm lidar [Henderson et al, 1993], with N=I.O, SNR=IO,
f=5MHz, w=O.2MHz, Ts=2Onsec. The range weighting function PL(t--2R/c) is shown for the

signal at 21as and 61as. The FWHM Ar of the pulse sensing volume, the distance Ap that the pulse
moves in 41xs, the signal correlation time Ax, and the periodogram Eq. (15) are also shown.

Fig.2 The normalized CRB's af for estimation of mean frequency f, t_s for estimating signal power S,
and aw for estimating spectral width w as a function of M for t_-10 and f_ = 0.2 (___), 0.5 (....),
1.0 (-- -), 2.0 (. -. -), and 5.0 (..-.. -).

Fig.3
A

The histograms (+) from 10000 ML and PP estimates of mean frequencyf =kfAf where kf is the
mean-frequency index, tl_=-10, t'_=0.5, and M=32. The best fit empirical model Eq. (34) for the
PDF is indicated by C_____)and the histogram determined from the best fit PDF is indicated (O).

Fig.4 The standard-deviation g of the "good" ML estimates for mean-frequency and the fraction b of
"bad" estimates as a function of • for t'_=0.5 and M=32. The results of the simulation are indi-

cated by (O) and the best fit empirical models Eqs. (39) and (40) are indicated by C____.). The

exact CRB is (....) and the empirical model corrected for bias by Eq. (38) is indicated by (- - -).

Fig.5 The standard-deviation g of the "good" PML estimates for mean-frequency and the fraction b of
"bad" estimates as a function of • for fb:0.5 and M=32. The results of the simulation are indi-

cated by (O) and the best fit empirical models Eqs. (39) and (40) are indicated by (._.__.). The
exact CRB is (....) and the periodogram CRB is indicated by (- - -) [Frehlich, 1993a].

Fig.6 The standard-deviation g of the "good" estimates for mean-frequency and the fraction b of "bad"
estimates as a function of @ for tk:0.5 and M=32. The results of the simulation are given by the
best fit empirical models Eqs. (39) and (40) for the ML (_.), PML (....), MVYW, (- - -), and PP
(.-.-).

Fig.7 The standard-deviation g of the "good" estimates for mean-frequency and the fraction b of "bad"
estimates as a function of • for t'_2.0 and M=32. The results of the simulation are given by the
best fit empirical models Eqs. (39) and (40) for the ML (_), PML (....), MVYW, (- - -), and PP
(.-.-).

Fig.8 The standard-deviation g of the "good" ML estimates for mean-frequency and the fraction b of
"bad" estimates as a function of @ for t"_-0.5. The results of the simulation are given by the best fit
empirical models Eqs. (39) and (40) forM = 32 (_.._3, 64 (....), and 128 (- - -).

Fig.9 The standard-deviation g of the "good" ML estimates for mean-frequency and the fraction b of
"bad" estimates as a function of • for t'2=2.0. The results of the simulation are given by the best fit
empirical models Eqs. (39) and (40) forM = 32 (___), 64 (....), and 128 (- - -).

Fig. 10 The CRB for estimation of mean frequency for multiple pulses with fixed total energy (fixed @)
and _= 0.2 C__D, 0.5 (....), 1.0 (- - -), 2.0 (. -. -), and 5.0 (.. - .. -).

Fig.ll The standard-deviation g of the "good" ML estimates for mean-frequency for Doppler lidar and
the fraction b of "bad" estimates as a function of • for different number of pulses per estimate
with the total signal energy per estimate fixed and f_=0.5. The results of the simulation are given
by the best fit empirical models Eqs. (39) and (40) for 1 pulse (_.), 5 pulses (....), and 10 pulses
(---).
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Fig.12 The standard-deviation g of the "good" ML estimates for mean-frequency for Doppler lidar and
the fraction b of "bad" estimates as a function of • for different number of pulses per estimate
with the total signal energy per estimate fixed and D.=2.0. The results of the simulation are given

by the best fit empirical models Eqs. (39) and (40) for 1 pulse (__), 5 pulses (....), and 10 pulses
(---).
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Fig.1 Simulation of Doppler lidar data for a 2 gm lidar [Henderson et al, 1993], with N=I.0, SNR=IO,
f =5MHz, w =0.2MHz, Ts =20nsec. The range weighting function PL (t-2R/c ) is shown for the
signal at 2j_s and 6_. The FWHM Ar of the pulse sensing volume, the distance Ap that the pulse
moves in 41_z, the signal correlation time At, and the periodogram Eq. (15) are also shown.
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Figure 2 Frehlich JTech No. 93052002

Fig.2 The normalized CRB's a! for estimation of mean frequency f, o s for estimating signal power S,
and a,_ for estimating spectral width w as a function of M for d>=-10 and fl = 0.2 C___), 0.5 (....),
1.0 (- - -), 2.0 (. -. -), and 5.0 (.. -.. -).
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Figure 3 Frehlich JTech No. 93052002

Fig.3 The histograms (+) from 100013ML and PP estimates of mean frequencyf--kfAf where kf is the
mean-frequency index, O=10, t"_=0.5, and M=32. The best fit empirical model F_x].(34) for the
PDF is indicated by (.__._) and the histogram determined from the best fit PDF is indicated (C)).
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Figure 4 Frehlich JTech No. 93052002

Fig.4 The standard-deviation g of the "good" ML estimates for mean-frequency and the fraction b of
"bad" estimates as a function of 4) for _=0.5 and M=32. The results of the simulation are indi-

cated by (O) and the best fit empirical models Eqs. (39) and (40) are indicated by (__.). The
exact CRB is (....) and the empirical model corrected for bias by Eq. (38) is indicated by (- - -).
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Figure 5 Frehlich JTech No. 93052002

Fig.5 The standard-deviation g of the "good" PML estimates for mean-frequency and the fracdon b of
"bad" estimates as a function of 4) for _.5 and M=32. The results of the simulation are indi-

cated by ((3) and the best fit empirical models E,qs. (39) and (40) are indicated by (__3. The
exact CRB is (....) and the periodogram CRB is indicated by (- - -) [Frehlich, 1993a].
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Figure 6 Frehlich JTech No. 93052002

Fig.6 The standard-deviation g of the "good" estimates for mean-frequency and the fraction b of "bad"
estimates as a function of 4) for t'k=0.5 and M=32. The results of the simulation are given by the
best fit empirical models Eqs. (39) and (40)for the ML (_), PML (....), MVYW, (- - -), and PP
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Figure 7 Frehllch JTech No. 93052002

Fig.7 The standard-deviationg ofthe"good"estimatesformean-frequencyand thefractionb of "bad"

estimatesasa functionof4>fort'_2.0and M=32. The resultsof thesimulationaregivenby the
bestfitempiricalmodels Eqs.(39)and (40)fortheML (..____),PML (....),MVYW, (---),and PP
(.-.-).
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Figure 8 Frehlich JTech No. 93052002

Fig.8 The standard-deviation g of the "good" ME estimates for mean-frequency and the fraction b of
"bad" estimates as a function of • for t2=0.5. The results of the simulation are given by the best fit
empirical models F-xlS.(39) and (40) form = 32 f____), 64 (....), and 128 (- - -).

0"00"I 10° 101 102 103 104 105 106



Figure 9 Frehlich JTech No. 93052002

Fig.9 The standard-deviation g of the "good" ML estimates for mean-frequency and the fraction b of
"bad" estimates as a function of @ for f_=2.0. The results of the simulation are given by the best fit
empirical models Eqs. (39) and (40) form = 32 (___), 64 (....), and 128 (- - -).
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Figure 10 Frehlich JTech No. 93052002

Fig. 10 The CRB for estimation of mean frequency for multiple pulses with fixed total energy (fixed ¢)

and _= 0.2 (___), 0.5 (....), 1.0 (-- -), 2.0 (.-. -), and 5.0 (..- .. -).
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Figure 11 Frehlich JTech No. 93052002

Fig.II The standard-deviationg of the "good"ML estimatesformean-frequencyforDopplerlidarand

the fraction b of "bad" estimates as a function of _ for different number of pulses per estimate
with the total signal energy per estimate fixed and _.5. The results of the simulation are given
by the best fit empirical models Eqs. (39) and (40) for 1 pulse (_..____.),5 pulses (....), and 10 pulses
(---).
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Figure 12 Frehlich JTech No. 93052002

Fig. 12 The standard-deviation g of the "good" ME estimates for mean-frequency for Doppler lidar and
the fraction b of "bad" estimates as a function of • for differem number of pulses per estimate
with the total signal energy per estimate fixed and f_2.0. The results of the simulation are given
by the best fit empirical models Eqs. (39) and (40) for 1 pulse (._), 5 pulses (....), and 10 pulses
(---).
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ABSTRACT Calculations of the exact Cramer-Rao Bound (CRB) for unbiased estimates of the mean fre-

quency, signal power, and spectral width of Doppler radar/lidar signals (a Gaussian random process) are
presented. Approximate CRB's are derived using the Discrete Fourier Transform (DVI'). These approxi-
mate results are equal to the exact CRB when the DFT coefficients are mutually uncorrelated. Previous
high SNR limits for CRB's are shown to be inaccurate because the discrete summations cannot be
approximated with integration. The performance of an approximate maximum likelihood estimator for
mean frequency approaches the exact CRB for moderate signal to noise ratio and moderate spectral
width.

EDICS - 2.1, 4.1, 4.9.1, 5.1, 5.2, 6.3.2

I. INTRODUCTION

The estimation of the mean frequency, signal power, or spectral width of radar, sonar, lidar, and
Synthetic-Aperture-Radar (SAR) returns [1-28] is important for remote sensing. Many estimation algo-
rithms have been investigated, including pulse pair [11,24,26], peak frequency[4], spectral domain [1,3-
13,17,18], maximum entropy [8,9,17,18], and maximum likelihood [1,3,7,17,18]. The use of accumu-
lated periodograms or correlograms for mean frequency estimation has been investigated by Rye and Har-
desty [17,18]. Many spectral domain algorithms have been reviewed by Kay and Marple [7].

Doppler radar data from atmospheric returns is sampled from the output of a complex receiver
[29,30]. For Doppler radar the scattering targets are atmospheric refractive index irregularities, rain,
snow, or insects. For Doppler Lidar the scattering targets are atmospheric aerosols. In both cases, the
received signal is well represented as a Gaussian random process because the total backscattered field is

the superposition of many randomly phased scattered fields. For Doppler radar, the time series is gen-
erated by transmitting a series of pulses. For Doppler lidar, the time series is the return signal from a sin-
gle transmitted pulse. The spectral width of a Doppler lidar signal is usually smaller than the spectral
width of a Doppler radar signal for the same range resolution because the effects of velocity fluctuations
over the sensing volume of the lidar pulse is smaller than for the radar case. The mean frequency of the
return signal provides an estimate of the radial component of the velocity field averaged over the sensing
volume of the pulse [2].

The ideal performance of an estimator of the signal parameters is given by the Cramer-Rao Bound
(CRB) [16,30,31]. The exact CRB has been determined for the cases of a sine wave with random ampli-
tude and phase in white noise [26], and for an autoregressive signal model [16]. The exact CRB for
parameter estimation of a Gaussian random process have been derived but not applied to the Doppler
radar/lidar problem. A new, more efficient expression for the exact CRB for estimates of the mean fre-
quency of a complex Gaussian signal added to complex Gaussian uncorrelated noise is derived. For this
data model, it is shown that the exact CRB's of all the signal parameters are independent of the mean fre-
quency. Approximate calculations of CRB have been discussed by Whittle [21], Zmic [26], and Levin

Most of this workwas performed while the author was a NationalResearchCouncil SeniorResearch Fellow
at NASA. Currentaddress is Cooperative Institute for Research in the EnvironmentalSciences (CIRES)
University of Colorado, Boulder, CO 80309 (303)-492-6776

Revised May 14, 1993



[10]. These approximations are essentially large sample approximations. Approximate CRB's are
developed by demonstrating that the CRB of a complex Gaussian process is unchanged by the Discrete
Fourier Transform (DFT), a unitary transformation. Approximate CRB's for the signal parameters are
derived using the periodogram (squared modulus of the DFT) of the data. These periodogram CRB's are
equal to the exact CRB when the periodogram elements are mutually uncorrelated. The maximum corre-
lation coefficient can he calculated thus providing an efficient test for the validity of the approximate

CRB. The periodogram CRB's and Levin's approximate CRB's are compared with the exact CRB's for a
complex Gaussian signal in complex Gaussian uncorrelated noise with a Gaussian covariance function for
the signal. The performance of an approximate maximum fikelihood estimator (ML) for the mean fre-
quency f is compared to the CRB. The validity of previous analytic approximations for the CRB for
mean frequency are determined. A summary concludes the paper.

H. THEORETICAL DEVELOPMENT

A. Exact Cramer-Rao Bounds

Doppler radar signals are well represented as a zero-mean complex Gaussian random process
[29,30] zj, where z is a column vector of M samples,

E[zkzt] = 0 (1)

and E [.] denotes ensemble average. The statistics of z are completely determined by the covariance
matrix [31,33]

R(O)= E [z.z*r] Rn(0) = E [zkz:] (2)

where 0 is the vector of parameters of the process, the row vector zr is the transpose of z, * denotes com-

plex conjugation, and Rkt denotes the elements of the covariance matrix R.

The variance of an unbiased estimate I_i of the parameter 0i has a lower bound called the Cramer-
Rao bound (CRB) which is given by [18,31]

VAR [t_i] = E [(l_i-0i )2] > yii (0) (3)

where J// is the i th element of the diagonal of the inverse of the Fisher information matrix J, with ele-

ments given by [18,31]

_21n[I R(0),] +EIz.r 02R-l(0)] _21n[I R(0)I ] + [" _)2R-1(0) _Jkl-_ _Ok_Ol OOk_l z_ OOk_O l D_R _k_O l f (4)

denotes the determinant of the matrix R and t_R[ denotes the trace of matrix R. This resultwhere IR I
LJ

is difficult to evaluate because the inverse of the matrix R is required before the derivatives are computed.
However, for a zero mean complex Gaussian process [17,15]

- _--1-^- 0R(0) n-l.,,. 0R(0) l

Exact calculations of the CRB simplify for the common model of Doppler radar or Doppler lidar

atmospheric signals given by

zk = sk exp(2rdfkTs) + nk (6)

where sk and nj, are complex Gaussian random processes, f [Hz ] is the mean frequency of the signal,
Ts [sec ] is the sampling interval, the noise samples nk are statistically independent of the signal sj,,

E [nk nl ] = 0 E [nk n_] = N 5k.-t , (7)

N is the average noise power per sample and 8k is the Kronecker delta symbol. The statistics of sk are

assumed to he independent of the mean frequency f. The covariance matrix R then becomes [26]
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_R(0)= _D0(*) (8)

or

Ru (0) = QJa(¢_)exp[2_ifTs (k-l)] (9)

where D is a diagonal matrix with elements

D_ = exp(2_if kTs ), (1O)

QJa are the elements of the covariance matrix Q, the covariance of sk+nk, and the system parameters are
0 = (f ,_). The matrix D is a unitary matrix [D D* -- I where I_is the identity matrix]. The determinant of

R is equal to the determinant of 0 and is independent of the mean frequency f.

The Fisher information matrix for elements involving the parameters _ are given by

"=" "="a,,- j-L a,, j
since

for any matrices __Dand Q. These Fisher information matrix elements are independent of the mean fre-
quency f. The same argument proves that the Fisher information matrix elements involving the mean fre-
quency are also independent of the mean frequency. Therefore, the Fisher information matrix and the
CRB's are independent of the mean frequency f for the signal model of Eqs. (6) and (7).

A numerically more efficient expression for the exact CRB of estimators for the mean frequency is

produced by writing the inverse of the covariance matrix as

R-l(0) = D Q-I (_) D-1 (13)

or

(R--l)u (0) = (Q-1)k/(¢p)exp[2rcifTs (k-l)l (14)

where (R.._-l)_adenotes the k/ element of the man'ix R -l. The Fisher information matrix element Jll for
the mean frequency f becomes [substitute Eqs. (9) and (14) into Eq. (4)]

M-1M-1

Jll =-4_'2Ts 2 ]_ ]_ (l-k)2Qtt(Q-1)tk (15)
t=o 1=o

This result can also be obtained from Eq. (5) by expanding the matrix operations and using the matrix

identity QQ-I=I. 2F_..(5) has approximately 3M3+2M2+M floating point operations while Eq. (15) has
approximately _V/+M floating point operations. If the mean frequency f is the only unknown parame-
ter or if the off diagonal elements of J are zero, the CRB for estimation of the mean frequency f is given
by

o]>l/Jll . (16)

B. Approximate Cramer-Rao Bounds

The calculation of the CRB is numerically intensive, especially for large M. Asymptotic expres-
sions valid for large M have been derived by Whittle [21 ], Levin [10], and Zrnic [26]. The region of vali-
dity of these results is difficult to determine [10,15] and depends on the parameters of the process as well
as M. A new approximate CRB and a criteria for testing the validity of the approximation will be
presented here, based on the past work of Levin and Whittle. The approximate CRB's of Whittle, Levin,
and Zmic can be derived from this approximate CRB, however, further approximations are required.

The Discrete Fourier Transform (DFT) of the data vector z is given by

u=Uz (17)
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wheretheelements of the unitary matrix U are

Ue = M-l/2exp(-2_k//M)

and

(18)

M-I

uk = M-P2 _ zt exp(-2rcikl /M ). (19)
1=0

Because this is a linear transformation, the vector u has a joint complex Gaussian probability density
function which is a function of the covariance matrix R"

R_.'= E [u u*r ] = E [U z z*r _U-11 = U R U -1 . (20)

The determinant of the matrix R' is equal to the determinant of the matrix R. The Fisher information

matrix for the parameters 0 in terms of the statistics of the new vector u is denoted as J' and given by [see
Eq. (4) and (12)1

a21n[lR(0)l] +_UR _2R-1(0) U-I}=JM (21)

The Fisher information matrix using the random vector u is equal to the Fisher information matrix using
z. Therefore, the CRB's are identical.

The vector of DFT coefficients u contain the same information as the original time series z.
Assume the random variables uk are mutually uncorrelated and statistically independent [10]. Then R' is
a diagonal matrix with elements

R 'tt = E [uk ut*]= P (k ,0)Sk-t • (22)

The function P (k ,0) is the ensemble average of the periodogram

,d(k) = ut ut (23)

and can be written as [28]

M-IP(k,0) = )". R. (0)(1 - )exp(-2rdkn/M) (24)
n=-(M-1)

and Rkt (e)=Rk-4 (0). The inverse covariance matrix R '-I is a diagonal matrix with elements

(gt-l)k/ = P-l(k,O)_k-i• (25)

Then, theFisherinformationmatrixisgivenby [substituteEqs.(22)and (25)intoF__xl.(5)]

M-I d(m ,Ok)d(m,Or)

J'kt=Jkt = _, p2(m,0 ) (26)
m=O

where

d (m ,0t) = 3P (m ,O)
a0 k (27)

For finite M, the accuracy of this approximation for the CRB is determined by the correlation coefficient
p(k ,l) of the periodogram elements which can be written as [28]

1 u-l R sin[g In I (k - l)/M ]
p(k,/)= p(k,O)P(l,e)M2 I _ .(8) si_i--_/_ exp[-2_(k +l)n/M]l 2 (28)

n---(M-l)

The results of Whittle and Levin can be obtained from Eq. (26) by assuming the average periodo-
gram can be approximated by the continuous spectrum and approximating the summation as an integral.
Zmic [26] produced an approximate time-domain CRB for the estimation of the mean frequency f and
the signal model Eqs. (6) and (7), by assuming R -1, the inverse of the covariance matrix R, is asymptoti-
cally Toeplitz (see ref. [26], Eqs. (A.21), (A.26)). This result can be derived from the approximate
periodogram CRB [34].
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IIL CALCULATIONS

A. Numerical Calculations

The CRB is calculated for the signal model of Eqs. (6) and (7), assuming stationarity of the data
[Rkt (0)=Rk-4 (0)] and the Gaussian covariance model of Zrnic [26], i.e.,

Rk = S exp[-2_2(wkTs )2+2_ifkTs ]+N _Sk (29)

or

Qk = S exp[-2_2(wkTs )2]+N _Sk (30)

where S is the signal power, f is the mean frequency or Doppler frequency, w the spectral width, N is
the noise power, and S/N is the Signal-to-Noise Ratio (SNR). The system parameters are
(01,02,03) = (f ,S ,w ). Then

P (m ,0) = N + S _ (1 - )exp[-2_'w 2Ts 2n 2]exp[- (m - fMT s)] . (31)
n _=---(M-I )

The calculations of the approximate CRB simplify if we write the mean frequency f as

f = (mF + 6)Af (32)

where

1 (33)
af- rCs

is the frequency resolution of the periodogram, mF is the mean frequency index, and -1/2<e<1/2. Then

_1 In I 2 2 2 2_inP(m,O)=N + S (1- --_--)exp[-2_'Zw Ts n ]exp[---_(m--mF--E)]. (34)
n_--(M-1)

The integer mp is the index of the maximum of the average periodogram and 6 is the offset in units of Af
of the true mean frequency from the frequency mr Af. The elements of the Fisher information matrix for
the approximate CRB can be written as a DFT. The function d (m ,02) is the coefficient of S in Eq. (34).
The other two functions can be written as [see Eq. (31)]

/)P (m,0) _ 2foiSTs _1 _(1
d(m ,01) - Of ,,_-(M-D

_ 2 2 2 2_in

exp[-2_w Ts n ]exp[----_(m - m r - 6)]

and

(35)

d(m ,03) - _w n=-(M-D

-- 2 2 2 21tin
exp[-2_"w Ts n ]exp[----M--(m-mF-e)]. (36)

The approximate CRB is a function of the frequency offset parameter 6. For spectral width
wMTs >0.5, there is little dependence on 6 [34]. The mean frequency f is an unknown parameter which
is usually random. Then 6 will be uniformly distributed on the interval (-1/2,1/2). To remove the depen-
dence of 6, the approximate CRB's are calculated using Eqs. (4), (16), (26), (34), (35), (36) and the result

averaged over the uniform distribution of e. We will call this approximate CRB the periodogram CRB.

The correlation coefficient p(k ,l) is also a function of 6. The average over e of the maximum corre-
lation coefficient for all k and l is denoted by Pmax. If Pmax is small, the periodogram elements are

approximately mutually uncorrelated and the periodogram CRB's are a good approximation for the exact
CRB's of unbiased estimates of the parameters of the complex Gaussian random processes u and z. For

all periodogram CRB calculations, the index mF is set to zero since the summation over index m in Eq.
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6

(26)is independentof rap. The numerical calculations of the periodogram CRB are performed using the
Fast Fourier Transform (FFT) algorithm for the DFr. For the exact CRB, the inverse of the Toepfitz
matrix Q is calculated using Trench's technique with Durbin's algorithm [35].

Zmic [26] produced analytic expressions for high SNR

1 12(wT$) 4

o]>_ Ts2g [1 - 12(wTS) 2] (37)

and low SNR

t_fl>-_--_ 4q'_(wTs )3 N2
Ts M S 2

(38)

B. Cramer-Rao Bound for Mean Frequency Estimation

Many different estimators for mean-frequency have been suggested and analyzed. In the limit as
M---_00 the performance of the maximum likelihood (ML) estimate approaches the CRB [ 10,20,31,32] and
the estimates have a Gaussian distribution. However, the ML estimate is a numerically intensive algo-
rithm. The performance of an approximate ML estimator will be compared to the exact and approximate
CRB's. To reduce the computational effort, the spectral width w is assumed known and the signal power
S is estimated by

1 M-I ^

g = I _-y=o[P (m) -N]I (39)

and I • I denotes absolute value. An approximate maximum likelihood estimate for the mean frequency
that assumes knowldege of the spectral width w (this is true when the velocity fluctuations over the sens-
ing volume of the pulse are negligible and the spectral width is determined by the transmitter pulse) is the
value f [10] that maximizes the log likelihood function L assuming the periodogram elements are mutu-
ally uncorrelated, i.e.,

L=-'_ 1 ff(_). (40)
m=o P (m,S ,f )

Note that the average periodogram P(m) is used instead of the continuous spectrum [10,17]. This
improves performance for narrow spectral width and high SNR. A version of Levin's ML estimator that

uses accumulated periodograms has been investigated by Rye and Hardesty [17,18]. To produce a
numerically efficient estimator, L is calculated for f =kfAf,kf=l,2,.Al. The performance of this
approximate ML estimator was determined from 10000 simulations of random data [3] with M=128
using the covariance model Eq. (29) with a mean frequency f =0.5ITs, i.e., f is located in the center of

the periodogram bin k---M�2. The Probability Density Function (PDF) of the mean frequency index kf of
these approximate ML estimates is shown in Fig. 1 for SNR =0.1. The PDF's are characterized by a uni-
form distribution of "bad" estimates and a clump of "good" estimates about the true mean frequency
[3,4,11,12,17]. Because the signal power for each estimate is random, there will be realizations where the
signal will be hidden in the additive noise and a random noise spike will be chosen as the mean fre-
quency. The "bad" estimates produce a bias which creates a problem for comparison with the CRB calcu-
lated for unbiased estimates. One solution is to calculate the CRB for a biased estimator [20,31], but the

bias depends on the estimator. This comparison is presented in [3]. We will compare the CRB to the
standard deviation of the good estimates around the true mean frequency. A theoretical PDF is calculated
assuming two components: a uniform distribution for the "bad" estimates and a Gaussian distribution for
the "good" estimates. The standard deviation of the good estimates and the fraction of bad estimates are
determined by minimizing the mean square error between the theoretical PDF and the simulated PDF.

For the parameters of Fig. 1. and a normalized spectral width wTs=O.O1, 25.1% of the estimates are bad
estimates; for wTs=O. 1, 28.8% of the estimates are bad estimates.

A comparison of exact and approximate CRB's for the estimation of the mean frequency is shown
in Fig. 2 for M=128 data points, as a function of the normalized spectral width wT s for various SNR.
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When the maximum correlation Pm_x is small (pm_<0.01), the periodogram CRB is a good approxima-
tion to the exact CRB. When the spectral width w is less than the periodogram resolution Af, the
periodogram CRB is larger than the exact CRB and Pmaxapproaches unity. This is the explanation for the
failure of the periodogram CRB and all it's analytic approximations (Whittle's, Levin's, Zmic's) to agree
with the exact CRB in the limit of spectral width approaching zero, (a sine wave with random amplitude
and phase) (see Ref [26] Eq. (A.18)). Levin's approximate CRB is slightly lower than the exact CRB for
narrow spectral width and much lower at large spectral width.

The performance of the approximate ML estimator is complicated at low SNR by the bias intro-
duced by the bad estimates (see Fig. 1). For SNR=0.1, the standard deviation of the good estimates is
below the exact CRB for large spectral width. However, the standard deviation using all the estimates is
above the exact CRB. For higher SNR, there is little bias because most of the estimates are distributed

around the true mean frequency and the standard deviation of the approximate ML estimates approach the
exact CRB for moderate to large spectral width (see also Ref. [1]). For very narrow spectral width all the
signal power is located in one periodogram element if e=0. If the true mean frequency is not centered on a
periodogram element (e_), then the signal power is distributed over more than one periodogram element
[2, Chap. 5] and the approximate ML estimate should include the dependence on e. This regime is rarely
encountered in Doppler radar but is important for Doppler Lidar measurements when the wind fields over
constant the sensing volume of the pulse. Then the exact maximum likelihood estimator is preferred [3].

A comparison of the exact and approximate CRB's for the estimation of the mean frequency f are
shown in Fig. 3 versus SNR for M=128 data points and various spectral widths. Again, the approximate
periodogram CRB agrees with the exact CRB when the maximum correlation Pmax<0.01. Levin'S approx-
imate CRB is a good approximation to the exact CRB for this parameter regime. Zmic's low-SNR ana-

lytic expressions for CRB (a) are accurate for only very low SNR. The high-SNR analytic approximation
of Zmic (b) [Eq. (37)] does not agree with the exact CRB due to the poor representation of the summation
by integration (see Fig. 4). The standard deviation of the approximate ML estimates is in excellent agree-
merit with the periodogram CRB. This result appears to be general [3], i.e., the standard deviation of
mean frequency estimates based on the periodogram or based on estimates of the covariance are bounded
by the periodogram CRB if there is no bias from the bad estimates (higher SNR). This class of mean fre-
quency estimators includes the periodogram estimators, auto-regressive estimator (AR), auto-regressive
moving average (ARMA), and Minimum Variance or Capon spectral estimator [7].

The source of the error in the high SNR analytic expressions for CRB and Levin's approximation
are revealed in Fig. 4 for a very high SNR of 1000. The terms of the Fisher information matrix element

J'll with e=0 [see Eqs. (16), (26), (34), (35)] are compared with Levin's approximation (see Eq. (A.36) of
Ref. [26]) and the high-SNR approximation of Zmic [26]. The high SNR approximation for the integrand
is dominated by the largest values of the periodogram index m, i.e., the periodogram coefficients farthest
removed from the spectral peak of P (m). This region is the most difficult _to represent with analytic
approximations to the discrete summation, especially for small spectral width. This error is not reduced as
SNR approaches infinity. Levin's approximation to Eq. (26) is also higher and this produces a CRB that
is lower than the periodogram CRB but this error results in a good approximation to the exact CRB for
much of the parameter space of interest.

C. Cramer-Rao Bound for Signal Power and Spectral Width

Estimators for the signal power and spectral width have been discussed previously ([2], [9], [10],
[13], [26], [27]). The exact CRB for estimation of the signal power when spectral width is also estimated
is given by

as2_> J 33
122']33 -J_3 (41)

The CRB's for estimation of S is shown in Fig. 5 versus normalized spectral width for various SNR. The
periodogram CRB is approximately equal to the exact CRB when the maximum periodogram correlation
Pm_t is small. Levin's approximate CRB is poor for small and large spectral width. For low SNR, the
CRB is close to the value unity which is expected for one independent sample of the signal per estimate.
For high SNR, the signal power can be more accurately estimated when the spectral width is large. This
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reflectsthelargernumber ofindependentsamplesavailableperestimate.

The CRB's areshown inFig.6 versusSNR forsmalland moderate spectralwidth.The exactCRB
decreaseswith increasingSNR. The periodogramCRB isa poor approximationfortheexactCRB for

narrowspectralwidthand highSNR. ThisisreflectedinthehighcorrelationPmLx.The approximateana-

lyticcalculationsagreeatlow SNR (a)butnot athighSNR (b).

The exactCRB forestimatesofthespectralwidthwhen signalpower isalsoestimatedisgivenby

o2> Jll
J l IJ33 - J _3 (42)

The CRB's for estimates of spectral width w are shown in Fig. 7 versus normalized spectral width wTs
for various SNR. The ability to estimate spectral width using the periodogram degrades when the spectral
width is smaller than the frequency resolution Af (wMTs<l). The periodogram CRB agrees with the
exact CRB when the maximum correlation Pm_x is small. Levin's approximate CRB is less than the exact

CRB for small spectral width.

The CRB's for estimates of w are shown in Fig. 8 versus SNR for small and moderate spectral

width. The exact CRB decreases with increasing SNR. Again, Zmic's low SNR limit (a) agrees with the
exact CRB at low SNR but Zrnic's high SNR limit 0a) is incorrect. The source of the error at high SNR is
the failure of the integral approximation for the discrete summation (see Fig. 4). The approximate CRB's
for signal power and spectral width are a good approximation to the exact CRB's when pmax<0.01 for all
cases considered.

IV. SUMMARY

Previous results for the exact CRB of the parameters of a complex Gaussian random process are

applied to Doppler radar/lidar parameter estimation. A new expression Eq. (15) for the exact CRB for
estimation of mean frequency was derived for a complex Gaussian signal in uncorrelated noise. For this
model, the CRB's for all the signal parameters are independent of the mean frequency. Approximate
CRB's were derived by taking advantage of the fact that the DFT of the data has the same CRB and there-
fore contains the same information as the original time series. When the DFr coefficients are mutually
uncorrelated then so are the periodogram coefficients, and the periodogram CRB is equal to the exact
CRB. For this case, the periodogram (or equivalently, the estimates of the covariance) contain the same
information as the original time series. The periodogram CRB and Levin's approximate CRB were com-
pared to the exact CRB for estimation of mean frequency, signal power, and spectral width for a signal
with a Gaussian covariance function. Levin's approximate CRB is lower than the exact CRB for narrow

spectral width. For moderate spectral width and moderate SNR, all the CRB's show good agreement.
The performance of an approximate maximum likehood estimate for mean frequency f Exl. (40) using the
periodogram and assuming knowledge of the spectral width approaches the exact CRB for moderate SNR
and moderate spectral width. The role of the CRB for low SNR is complicated because all estimates for
mean frequency are biased due to the uniformly distributed "bad" estimates (See Fig. 1 and Ref. [3]). The
periodogram CRB appears to be a lower bound for the unbiased spectral domain estimates of the mean
frequency [3] (periodogram, maximum entropy, auto-regressive, auto-regressive moving average,
minimum variance spectral estimator (Capon) [7]). For narrow spectral width and high SNR, more than a
factor of two improvement in mean-frequency accuracy is indicated by the CRB [see Fig. 2]. This
improvement can be realized with the Maximum Likelihood estimator [3]. The calculation of the
periodogram CRB and the maximum correlation coefficient Pr.u can be efficiently performed using the
FFT algorithm. Previous analytic high SNR limits for exact CRB's were shown to be inaccurate because
the discrete summations cannot be accurately approximated by integration (see Fig. 4).
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FIGURE CAPTIONS

Fig. 1 Probability Density Functions (PDF) (e) from 100013 approximate Maximum Likelihood estimates
of mean frequency f Eq. (40) for a SNR =0.1 and two different spectral widths. The best fit
theoretical model is indicated by (___).

Fig. 2 CRB for mean frequency f vs normalized spectral width for SNR of 0.1,1, and 10 and M=128
data points. Exact CRB [Eqs. (16), (11), and (30)] (____), periodogram CRB (....), Levin's CRB (-
- -), and maximum periodogram correlation Pm,x (- - • -). The performance of the approximate
maximum likelihood estimator Eq. (40) is indicated by O.

Fig. 3 CRB for mean frequency f vs SNR for normalized spectral widths of 0.01 and 0.05 and M=128
data points. Exact CRB [Eqs. (16), (11), and (30)] (__), periodogram CRB (....), Levin's CRB (-
- -), Zmic's low SNR limit Eq. (38) a, Zrnic's high SNR limit Eq. (37) b, and maximum periodo-

gram correlation Pm,x (. - -)- The performance of the approximate maximum likelihood estima-
tor Eq. (40) is indicated by O.

Fig. 4 Integrand for approximate CRB's for mean frequency f vs periodogram index m for an
SNR=1000, M=128 data points, and normalized spectral widths of 0.1 and 0.05. The elements of
the discrete summation for the Fisher information matrix element J'n Eq. (26) with Eqs. (34),

(35), and me=0 are indicated by (______3,Zmic's analytic approximation for Levin's CRB [Ref.
[26], Eq. (A.36) is (....), Zrnic's high SNR approximation [26] is (_ _ _), and the average periodo-
gram Eq. (34) is marked as P (m).

Fig. 5 The exact CRB for signal power [Eqs. (41), (11), and (30)] (__3, the periodogram CRB (....),
Levin's CRB (- - -), and the maximum periodogram correlation Pmax (. -- -) vS normalized spec-
tral width wTs.

Fig. 6 The exact CRB for signal power [Eqs. (41), (11), and (30)] (__3, the periodogram CRB (....),
and Levin's CRB (- - -), vs SNR for normalized spectral widths of 0.01 and 0.05 and M=128 data

points. Zmic's [ Ref. [26], Eq. (A.40)] low SNR limit a, and Zmic's [ Ref. [26], Eq. (A.38)] high
SNR limit b. The maximum periodogram correlation Pmaxis (. _. _).

Fig. 7 The exact CRB for spectral width [Eqs. (42), (11), and (30)] (__), the periodogram CRB (....),
Levin's CRB (- - -), and the maximum periodogram correlation Pm_ (. -. -) vs normalized spec-

tral width wTs for various SNR and M=128 data points.

Fig. 8 The exact CRB for spectral width [Eqs. (42), (11), and (30)] (__), he periodogramCRB (....),
Levin's CRB (- - -), and the maximum periodogram correlation Pmax (. -. -) vs SNR for normal-

ized spectral widths of 0.01 and 0.05 and M=128 data points. Zmic's [Ref. [26], Eq. (A.41)] low
SNR limit a, and Zmic's [Ref. [26], Eq. (A.39)] high SNR limit b.
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Heterodyne Efficiency for a Coherent Laser Radar with Diffuse

or Aerosol Targets

R. G. Frehlich

Cooperative Institute for Research in the Environmental Sciences (CIRES)

University of Colorado, Boulder, CO 80809

Abstract

The performance of a Coherent Laser Radar is determined by the statistics of the

coherent Doppler signal. The heterodyne efficiency is a excellent indication of per-

formance because it is an absolute measure of beam alignment and is independent

of the transmitter power, the target backscatter coefficient, the atmospheric attenu-

ation, and the detector quantum efficiency and gain. The theoretical calculation of

heterodyne efficiency for an optimal monostatic lidar with a circular aperture and

Gaussian transmit laser is presented including beam misalignment in the far-field and

near-field regimes. The statistical behavior of estimates of the heterodyne efficiency

using a calibration hard target are considered. For space based applications, a biased

estimate of heterodyne efficiency is proposed that removes the variability due to the

random surface return but retains the sensitivity to misalignment. Physical insight

is provided by simulation of the fields on the detector surface. The required detector

calibration is also discussed.

Key words: Lidar, Laser Radar, Remote Sensing.

1. Introduction

An important measure of the performance of coherent laser radar (CLR) is the Signal-to-

Noise Ratio (SNR) defined by[ 1]

SNR(t)- (i2s(t)) (1)
(i2N)

where () denotes ensemble average, (i2s(t))[A 2] is the average coherent power at time t[s],

and (i2N(t))[A _] is the average noise power. For an infinite diffuse target at range R[m] with

uniform backscatter coefficient p, detector noise dominated by Local Oscillator (LO) shot

noise, a detector with uniform quantum efficiency r/Q that collects all the energy of the LO

beam, the CLR SNR is given by [ 1, 2]

SNR(R) = _?QPLpK2c(R) (2)
hvB

where PL[W] is the transmitted laser power, h[Js] is Plancks constant, v[a-'] is the frequency

of the laser, B[s-q is the signal bandwidth of the detector, K is the one-way atmospheric



attenuation, and C(R) is the coherent responsivity. For an aerosol target, similar expres-

sions are obtained [Ref. [ 1], Eqs. (89), (92)]. When the effects of atmospheric refractive

turbulence are negligible

C(R) "- ARTTrlH(R)/R 2 (3)

where AR[m _] is the area of the telescope aperture, TT is the fraction of the laser power

transmitted through the telescope aperture, and rlH(R ) is the heterodyne efficiency. Het-

erodyne efficiency is unity when the backscattered field is proportional to the LO field on

the detector surface. Heterodyne efficiency is a useful measure of performance for a CLR

because it is independent of the transmitter power, the backscatter coefficient, the detector

quantum efficiency, and the atmospheric attenuation. The heterodyne efficiency can also be

estimated from the detector signal [ 1], i.e.,

(4)
T1H(t) = 2(Ioc)(Is(t))

where 1De[A] is the direct current (DC) due to the LO, is(t)[A] is the intermediate frequency

(IF) signal current or coherent signal, and Is(t)[A] is the direct detection signal current due

to the backscattered field [Note the typo in Ref. [ 1], Eq. (15)]. For diffuse and aerosol

targets, the backscattered field at the receiver is spatially random and described by "speckle"

statistics, i.e., the complex field has a zero-mean joint Gaussian probability density function

(PDF). The statistical behavior of estimates for the heterodyne efficiency will be investigated
with theoretical calculations and numerical simulations.

2. Theory

The analysis of heterodyne efficiency is presented using the normalized direct detection

power

d = Isl(Is> , (5)

and the normalized coherent detection power

_ (6)
2(IDv){Is)

Then (d)= 1 and (c)= r/u.

The heterodyne efficiency depends on the CLR design, which can be represented by [

1] the transmitter aperture function WT(_), the normalized transmitter laser field incident

on the transmitter aperture et.(t_, 0)[m-l], the receiver aperture function WR(q), and the

normalized Local Oscillator (LO) field at the receiver aperture eLo(q, 0)[m-_]. Here, _[m]

and q[m] denote the two-dimensional transverse vector for the transmitter aperture and

receiver aperture, respectively.

We will consider a monostatic CLR [WT(6) = WR(_) = W(_)] with a circular telescope

aperture of radius a[m], i.e.,



W(a) = 1 [u[ _< a

- 0 lul> a

and

FAa = [W(q)[2d,7 = 7ra2= _rDZ/4
oO

where D[m] is the diameter of the aperture.

The heterodyne efficiency can be written as [ 1]

RZAZ ._

T1H( R ) -- A-_ J_ocjT(p, R)japLo(p, R)d_

where

jT(P, R) = leT(p, R)[ z

jSPLO(ff, R) -. z= leSPLO(P, R)I

(7)

(8)

(9)

(10)

(11)

are the irradiance [m -z] of the normalized transmitter and Back Propagated Local Oscillator

(BPLO) field, respectively. Here,

Fer(15, R) = eT(_,O)G(_;_,R)dff
OO

is the normalized transmitter field at the target coordinate (l_, R) [m],

er(g,0) = _L(_,0)w(_)

is the normalized transmitter field at the telescope aperture,

//eBPLO(P, R) = eBPLO(V, 0)G(15; _7, R)dq
O0

is the normalized BPLO field at the target,

_sp,_o(_,0) = 4(,7,0)w(_)

is the normalized BPLO field at the receiver aperture,

G(15; if, R) = 2_Rk LI"ik _. ]exp/_-_(p - _)z

(12)

(13)

(14)

(15)

(16)

is the free space Green's function [m -z] for propagating the scalar fields from the transmitter-

receiver plane to the target plane under the Fresnel approximation where k[rn -1] = 2_'/)_ is

the wavenumber of the transmitter field, and ),Ira] is the wavelength of the field.

The integrated normalized irradiance

/_ jT(_,R)d_ = TT (17)
O0



is equal to the power transmittance TT of the laser through the transmitter-receiver aperture.

Similarly,

'°jsPLO(_,R)d_ = TR (18)
O0

is equal to the power transmittance Ta of the BPLO field through the transmitter-receiver

aperture.

A Gaussian spatial distribution is the most common laser transmitter field, i.e.,

_ iku2_ (19)eL(6,0) = (2ra_) -1/2 exp 2a_ 2F_ ]

where aL [m] is the 1/e intensity radius of the beam at the transmitter aperture, and FL[m] is

the radius of curvature of the phase front. The irradiance at the target is given by [substitute

Eqs. (13) and (19) into (12), convert to polar coordinates and integrate over angle]

jT(_, R) - __..._FIY(_, kpa/ R)I 2
_ra_

(20)

where

= - - RIEL) (21)

6T = a/O'L , _RF = a/RF , RF = (R/k) 11_ (22)

_01Y(n,q) = exp(-x2_2/2)Jo(qx)xdx (23)

An efficient series expansion for Y(fl, q)is [ 31

Y(_2, q) = fl-2 [exp (- 2-_2) - exp (--_)

= a-2 exp(-a_/2) _ J.(q)
n----1

q > If_21 (24)

The far-field result is produced when fl]. = 6_., which occurs when R = FL (focused condi-

tion). For a collimated beam (FL = oo), the far-field condition is _T >> 6m_ or RF >> aL.
A Gaussian field focused on the detector is a common choice for the LO field. The

receiver-plane representation of the LO field is

v2 ikv2 _ (25)eLO(q, O) = (27ra2Lo) -'/2 exp --2a_'-"_ + 2F_o ]

and

= 2 12jBPLO(_,R) -ff-_--lY(_,kpa/R)
?r O'L O

(26)

4



where

a_ -- N_- iN,F(1 - nlF,_,o), 6, = al<,Lo (27)

In practice, it is difficult to perfectly align the LO field with the backscattered field. The

misalignment angle AO[rad] produces an offset Ap - RAO[m] between the two irradiance

distributions in the target plane. (The effects of refractive turbulence on beam misalignment

for Gaussian beams and a Gaussian aperture were investigated by Frehlich [ 4]). For this

CLR, the heterodyne efficiency including misalignment is given by

rlH(R ) - _ Q(nT,_R, Aq)

where

(28)

Q(flT, flmAq) = IY(fl:r, 4)I2IY(nR,4- Af)12d_ (29)

is the overlap integral of the normalized transmitter irradiance [Y(QT, 4)[ 2 and BPLO irra-

diance [Y(flR, (_- A(_)[ 2 and

Aq = _DAO/A (30)

is the normalized angle-misalignment.

Wang [ 5] calculated the optimal parameters for a Gaussian transmit beam and a Gaus-

sian LO beam focused on the detector for the far-field condition [6T = 6,_ = 1.7633,

r/H = 0.41992, TT = TR = 1--exp(--6_.) = 0.95536]. Rye [ 6] proposed an optimal de-

sign where the BPLO beam does not have any truncation by the telescope aperture, i.e.,

TR = 1. For this design

45_f_ Q(flT, 12R, Aq) (31)
rlH( R) = 1rTT[1 - exp(-$_)]

and for a Gaussian LO beam, the optimal parameters are 6T = 1.7367, TT = 1 --exp(--_) =

0.95101, (IR = 1.1931, r/H = 0.460958. The difference between these two designs is discussed

by Rye and Frehlich [ 7].

For a collimated lidar, the near field behavior of heterodyne efficiency can be approxi-

mated by

R1A 2 r_. .

_?mvf( R) - _ ]_oJw(p, O)j, PLO(_, O)d_ (32)

For the collimated Gaussian lidar with the Rye design [see Eqs. (11), (13), (15), (16), (19),

(25), (32) and normalize the BPLO field to produce TR = 1]

46_,g_[1 - exp(-_. - 6_)] (33)
rIHNF(R)= 4 2 _)[1 --6RF(_ST + exp(--6_)][1--exp(--_)]

The optimal LO field for a Gaussian transmitter field and a circular aperture was deter-

mined by Frehlich [ 8] and produces essentially the same performance as the design proposed

by Rye. The behavior of heterodyne efficiency for a CLR with the Rye design will be con-
sidered here.
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3. Simulation of Performance

One important aspect of CLR performance for diffuse and aerosol targets is the random

nature of the backscattered field. The superposition of many random backscattered fields

with random amplitude and phase produces a complex Gaussian distribution or "speckle

field" for the total backscattered field [ 9]. The detection of such random signals in random

noise has been considered by Shapiro et al. [ 10]. We will investigate the estimation of

the heterodyne efficiency by generating computer simulations of the normalized heterodyne

power c and the normalized direct detection power d. Realization of the fields on the detector

will also be calculated to provide insight.

The backscattered field at the target can be represented as

es(l_,R) - U(p)eT(p,R) (34)

where U(I_) is a random complex amplitude with the property

= - (35)

where 8(l_)[rn -2] is the two-dimensional delta function. The backscattered field at the re-

ceiver plane es(q, 0) is given by

Fes(q,O) = es(_,R)G(_;q,R)d_
O0

(36)

The normalized direct detection power is then

R2[ °° V
d- ARTTJ_ootW(v)I les( ,O)12d¢ (37)

and the normalized coherent detection power is

R 2

c - AnTT I]-_ es(¢'O)e=meL°(q'O)d¢12f_°
(38)

The effects of angle misalignment A0 are calculated by multiplying the BPLO field with

no misalignment by the phase term [ 4] exp(ikAOv_) where v_[rn] is the x-coordinate of

the vector q. The random fields are calculated using the Fast Fourier Transform (FFT)

algorithm to propagate the fields. The random amplitudes U(I_) are generated using the

Box-Muller algorithm.

A typical receiver employs optical elements that pass all the backscattered field. Then,

for ideal optical elements, the field on the detector surface is

k f°° . ik.,

es(Cr, F) - 2-_-"_1oo W(q)es(v' O)exp(-''gv "mrJ- r _)dq (39)

where F[m] is the effective focal distance of the optical system. The fields on the detector sur-

face are particulary intuitive since the heterodyne efficiency is unity when the backscattered

field is proportional to the LO field. This is also true for the receiver-plane representation.
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4. Results

The simulation results for the far-field optimal design of Rye and the corresponding col-

limated near-field case with 6hE = 4 will be presented. The statistical variability of the

coherent detection power and the direct detection power from a simulation of 10,000 shots

for the perfectly aligned CLR for the far-field case is shown in Fig. 1 and for the near-field

case in Fig. 2. If the heterodyne efficiency had been unity, all the points would lie on a

straight line with a slope of unity. The far-field case has more scatter than the near field

case. This is due to the increased spatial averaging of the backscattered irradiance by the

telescope aperture in the near-field case.

Typical realizations of the backscattered field on the detector surface for a perfectly

aligned CLR is shown in Fig. 3 for the far-field and near-field cases. The dimensions of

the central lobe is approximately the diffraction limit _F/a of the circular aperture. The

poor match between the backscattered field and LO field for the typical far-field case is

the reason the heterodyne efficiency is 0.46096 for the perfectly aligned far-field case. More

than half the coherent power is lost due to the random mismatch between the backscattered

and LO fields. The near-field case is characterized by a larger distribution of the field

over the detector surface with fluctuations on the order of the diffraction limited scale but

with reduced amplitude which results in a heterodyne efficiency of 0.021832. The ratio of the

heterodyne efficiency to the approximate near-field heterodyne efficiency Eq. (33) is 1.05554.

The large number of "speckles" or regions of coherent field produces smaller variability of

the direct detection signal (see Fig. 2). Also, for typical CLR designs, the detector would be

smaller than the spatial extent of the field and the direct detection power would be reduced.

Measurements of heterodyne efficiency in the near-field regime may contain a bias due to

the finite extent of the detector. A rare case of high heterodyne efficiency and very low

heterodyne efficiency is shown in Fig. 4 for the far-field case.

The sensitivity of heterodyne efficiency to the misalignment angle A0 of the transmitter

and BPLO axis [ 1, 6] is shown in Fig. 5 for the far-field and near-field cases. The theoretical

heterodyne efficiency depends on the single parameter Aq = kaAO = 7rDAO/.L The simu-

lation results are in excellent agreement with the theory for both the near-field and far-field

case. (The estimation error for each simulation data point is 1%, consistent with exponential

statistics for the coherent power.) The heterodyne efficiency was estimated by the ratio of

the average of c to the average of d using the 10,000 shots of simulated data in Figs. 1

and 2 and various angle misalignment. In the laboratory one would measure the heterodyne

efficiency in this way using a calibration target with a uniform backscatter coefficient p. The

statistical accuracy of the estimate for heterodyne efficiency is determined by the number

of shots averaged and the statistical distribution of the two estimates for < c >= r/u and

< d >= 1. The Probability Density Function (PDF) of the direct detection power d and

the Gamma Distribution function g(d; o_,/3) proposed by Goodman [ 9] are shown in Fig. 6.

The Gamma distribution function is given by

az d z-' exp(-fld) (40)
g(d; a, fl) = F(/3)-

and the parameters of the Gamma Distribution are a = 3 = t/a_ where a] is the variance of

d. For the far-field case ad = 0.531. The same comparison for the near-field case is shown in

7



Fig. 7. Here, ad = 0.1526. In both cases the simulation results are in reasonable agreement

with the Gamma distribution.

The PDF of the normalized coherent detection power for the far-field case is shown in

Fig. 8 for perfect alignment along with the theoretical exponential distribution. Because the

backscattered field is the superposition of many, randomly phased components, the coherent

power should have an Exponential PDF. This was verified by the simulations for all cases.

The estimate of heterodyne efficiency _H with a fixed calibration target using the average

of J shots is given by

E_=, ck N

_H -- Zkj=, dk -- M (41)

where c_ and dk are the coherent power and direct detection power for shot k. The numerator

N has a Gamma Distribution g(N;1/(c),J) and the denominator M also has a Gamma

Distribution g(M; 1/a_, J/a_). For large J, the statistical accuracy of the estimate _n is

approximately

A____..__H = AN AM 1 + ad (42)
'ill --g- + -M-= vq

The estimation of heterodyne efficiency for satellite based lidars is a promising technique

to verify and maintain beam alignment, but is more difficult since there is no calibration

target. The surface return is the most promising signal since it may be large enough to

have a detectable direct detection signal but there is added variability from shot to shot

due to the random backscatter coefficient of the earths surface and the random atmospheric

attenuation. This added variability produces larger scatter in the estimate of the coherent

and direct-detection signal power. However, for estimation of heterodyne efficiency, this

variability can be removed by defining a biased estimate of heterodyne efficiency for each

shot as

b- c/d (43)

provided the direct detection signal can be estimated accurately for every shot. The average

of this biased estimate and it's standard deviation as a function of misalignment angle A0

is shown in Fig. 9 along with the true heterodyne efficiency (see Fig. 5). The bias of the

average of b is small and therefore provides a useful absolute measure of beam alignment.

The statistical reliability of this biased estimate depends on the PDF of b, which is shown

in Fig. 10 for perfect alignment. Also shown is the PDF of the average of 10 estimates

of b and a Gaussian PDF with the correct mean value and variance given by the variance

of b divided by the number of shots averaged. The same results for a misalignment of

Aq = kaAO = 7rDAO/A = 2 which corresponds to 2.08 dB loss in SNR are shown in Fig.

11. The Gaussian approximation for the PDF of the average of 10 estimates of b is a good

approximation. However, an accurate estimate of the biased heterodyne efficiency requires

an average of many shots. The PDF of a 40 shot average of b is shown in Fig. 12 for perfect

alignment and misalignment of _rDAO/A = 2 (2.08 dB loss in SNR) and _rDAO/A = 3 (4.76

dB loss in SNR), using the Gaussian approximation for the PDF's. The CLR misalignment

can be reliably determined with 40 surface returns.
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5. Detector Calibration

A real doppler lidar system does not measure the signal currents directly. Therefore, detector

calibration is required to extract the required signal currents from the detector signal. The

heterodyne efficiency can be estimated using both Continuous Wave (CW) or pulsed mode

of operation. For CW operation, two signal currents Is(t) and IDC are DC signals which

are given in terms of the detector voltage V by

I(V) = GDh(V) (44)

where I(V) is the photodetector response function Go[A/V] is the constant for a linear

response, and h(V)[V] is the nonlinearity function or deviation from linearity. We assume

that the photodetector is ideal in the limit of small voltage, i.e., h(V) = V. For pulsed

operation, the frequency response of the detector may be required to estimate the direct

detection signal Is(t).

If the magnitude of the IF signal current is(t) is small enough and if the magnitude of

the IF voltage signal vs(t)[V] does not change with the IF frequency v[Hz] then

is(t) = Gof(V)vs(t) (45)

where

1 dI(V) dh(V) (46)
f(V)- Go dV dV

is proportional to the derivative of the photodetector response function and f(0) = 1. A

measurement of heterodyne efficiency requires a measurement of h(V) and f(V), which can

be performed by the method proposed by Frehlich [ 11]. (Note that Ref. [ 11] considered

the calibration of integrated irradiance over the detector surface which is proportional to the

detector current). The operating point (I0, V0) determines the relationship between detector

voltages and the ideal signal currents. The direct detection currents are given by

IDC = Goh(Vo) (47)

and

ts(t) = GoZ(Vo)Vs(t) (4s)

where Vs(t)[V] is the increase in the DC detector voltage due to the backscattered field

collected by the detector.

The effects of the detector electronics and detector quantum efficiency as a function of

IF frequency are described by the normalized frequency response function

vs(u) (49)
H(v) - vs(u--* 0)"

Then

is(t) = Gof(Vo)vs(t)/H(u) (50)



and the heterodyneefficiencyis given by [see Eq. (4)]

f(Vo)(v_(t)) (51)
Tltt(t ) = 2h(Vo)(Vs)H2(v)

which is expressed in terms of the calibration functions f(V0), h(Vo), H(v), and the detector

voltages vs(t) and Vs(t). Note that the ideal detector gain Go is not required. The sensitivity

of the calibration functions to the detector operating point (Io, Vo) should be investigated.

6. Summary

The estimation of heterodyne efficiency is an excellent measure of CLR performance since

it is proportional to SNR but independent of the transmitter power, the target backscatter

coefficient, the atmospheric attenuation, and the detector quantum efficiency and gain. The

heterodyne efficiency is an absolute measure of the alignment of the backscattered and LO

field on the detector surface. The estimation of heterodyne efficiency is a statistical problem

because the detector signals are random. An estimation of the heterodyne efficiency requires

an accurate average of the coherent detection power, the direct detection power, and the LO

current. When using a calibration target, an unbiased estimate of the heterodyne efficiency

can be obtained by an ensemble average of the coherent and direct detection power. For a

lidar in space, the ratio of the coherent detection power to the direct detection power for each

ground return is a convenient biased estimate of heterodyne efficiency. The average of this

biased estimate produces a sensitive measure of CLR alignment and removes the statistical

variability of the random fluctuations of the signals due to the random backscatter coefficient

of the earth surface and the random atmospheric attenuation. Using 40 shots produces

an effective measure of system performance and beam alignment [see Fig. 12]. All the

results presented here assume a large detector that collects all the LO power and all the

backscattered power.

The calibration of real detectors requires two measurements: the low frequency response

function h(Y) (which is obtained [ 11] from a measurement of f(V), the derivative of h(Y))

and the frequency response H(v).

Acknowledgments

The author acknowledges useful discussions with M. J. Kavaya, B. J. Rye, and G. Spiers.

This work was supported by the National Science Foundation and the National Aeronautics

and Space Administration Marshall Space Flight Center under Research Grant NAG8-253

(Michael J. Kavaya, Technical Officer).

10



References

1. R. G. Frehlich and M. J. Kavaya, "Coherent laser radar performance for general atmo-

spheric refractive turbulence," Appl. Opt. 30, 5325-5352 (1991).

2. Y. Zhao, M. J. Post, and R. M. Hardesty, "Receiving efficiency of monostatic pulsed

coherent lidars. 1: Theory," Appl. Opt. 29, 4111-4119 (1990).

3. G. O. Olaofe, "Diffraction by gaussian apertures," J. Opt. Soc. Am. 60, 1654-1657

(1970).

4. R. G. Frehlich, "Effects of refractive turbulence on coherent laser radar," Appl. Opt.

32, 2122-2139, (1993)

5. J. Y. Wang, "Optimum truncation of a lidar transmitted beam," Appl. Opt. 27, 4470-

4474 (1988).

6. B.J. Rye, "Primary aberration contribution to incoherent backscatter heterodyne lidar

returns," Appl. Opt. 21,839-844 (1982).

7. B.J. Rye and R. G. Frehlich, "Optimal truncation of Gaussian beams for coherent lidar

using incoherent backscatter," Appl. Opt. 31, 2891-2899 (1992).

8. R. G. Frehlich, "Optimal design of monostatic coherent laser radar with a circular

aperture", Appl. Opt. 32, 4569-4577 (1993).

9. J. W. Goodman, "Some effects of target-induced scintillation on optical radar perfor-

mance," Proc. IEEE, 53, 1688-1700 (1965)

10. Shapiro, J.H., B.A. Capron, and R.C. Harney, "Imaging and target detection with a

heterodyne-reception optical radar" Appl. Opt. 20, 3292-3313 (1981).

11. R. G. Frehlich, "Estimation of the non-linearity of a photodetector," Appl. Opt. 31,

5926-5929, (1992).

11



Figure I

Fig. 1. Normalized coherent detection power c versus the normalized direct detection power d

for a perfectly aligned CLR and 10,000 shots with the target in the far field.
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Figure 2

Fig. 2. Normalized coherent detection power c versus the normalized direct detection power d

for a perfectly aligned CLR and 10,000 shots with the target in the near field (_RF = a/RE = 4).
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Fig. 3. Simulation of the backscattered field on the detector surface in the x direction es(w,, F)

and the y direction es(wv, F) for typical far field (r/n - 0.460, d = 1.015, c = 0.467) and near field

with 6RF = a/RF = 4 (tin = 0.0785, d = 0.969, c = 0.0760) cases. The tea/part of the complex

field is ( -- ) and the imaginary part is (...). The optimal LO field eLO(W, F) is also shown.



Fig.4. Simulation of the backscattered field on the detector surface in the x direction es(w_, F)

and the y direction es(w_, F) for far field and rare cases of excellent heterodyne efficiency

(r/H = 0.946,5, d = 3.325, c = 3.147) and poor heterodyne efficiency (r/H = 0.000344, d = 0.830,

c = 0.000286). The real part of the complex field is ( -- ) and the imaginary part is (...). The

optimal L O-field eLo(w, F) is also shown.
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Figure 5

Fig. 5. Heterodyne efficiency OH as a function of misalignment _rDAO/)_ with the results

of the 10,000 shot simulation of Fig. 1 for the far-field (e) and near-field (o) cases with

8nF = a/Rt_ = 4. The theoretical calculations Eq. (31) are ( -- ). The best-fit Gaussian function

0.46096exp[_(_-DA0/2.8363A) 2] is (...) and the best fit power-law model 0.9157(a'DA0/)Q -3"°4t5
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Figure 6

Fig. 6. PDF of direct detection power d from simulation of Fig. 1 and the theoretical Gamma

distribution (--) for a perfectly aligned CLR in the far-field.
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Figure 7

Fig. 7. PDF of direct detection power d using the average of 10 shots from the simulation of Fig.

1 and the theoretical Gamma distribution (--) for a perfectly aligned CLR in the far-field.
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Figure 8

Fig. 8. PDF of coherent detection power c from simulation of Fig. 1 and the theoretical Expo-
nential distribution (--) for a perfectly aligned CLR, in the far-field.
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Figure 9 . =. =_f_,oo o_g _'D_°/_
Fig. 9. Biased estimates of heterodyne el_ciency b c./d ___.i o cases of F_g. 1. The standard

The average of 10_000 simulations for the far-field •anct near-l_L_
deviation for the far-field O and near-field O are also shown as well as the theoretical calculations

for unbiased heterodyne efficiency Eq. (31) ( _ )"
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Figure 11

Fig. 11/ PDF of the biased estimate of heterodyne efficiency b = c/d for a misaJignment of

xDAS/_ = 2 in the far-field for 1 shot and the average of 10 shots. The Gaussian PDF ( -- ) with
the estimated mean < b > and standard deviation ab.
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Figure 12

Fig. 12. PDF of the average of 40 estimates of b for a misalignment of _DA0/R = 0 ( -- ), 2

(...), and 3 (- - -) assuming a Gaussian PDF.
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Coherent Doppler Lidar Signal Covariance including Wind
Shear and Wind Turbulence

R. G. Frehlich
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University of Colorado, Boulder, CO 80309

Abstract

The performance of coherent Doppler lidar is determined by the statistics of the

coherent Doppler signal. The derivation and calculation of the covariance of the

Doppler lidar signal is presented for random atmospheric wind fields and wind shear.

The signal parameters are defined for a general coherent Doppler lidar system in

terms of the atmospheric parameters. There are two distinct physical regimes: one

where the transmitted pulse determines the signal statistics and the other where

the wind field and atmospheric parameters dominate the signal statistics. When the

wind fields dominate the signal statistics, Doppler lidar data is non-stationary and the

signal correlation time is proportional to the operating wavelength of the Udar. The

signal covariance is derived for single shot and multiple shot conditions. For a single

shot, the parameters of the signal covariance depend on the random, instantaneous,

atmospheric parameters. For multiple shots, various levels of ensemble averaging over

the temporal scales of the atmospheric processes are required. The wind turbulence

is described by a Kolmogorov spectrum with an outer-scale of turbulence. The effects

of the wind turbulence is demonstrated with calculations for a horizontal propagation

path in the atmospheric surface layer.

Key words: Lidar, Remote Sensing.

1. Introduction

Coherent Doppler lidar has become a promising new instrument for observations of the

atmosphere. The first systems were based on the C02 laser 1-4. More recently, solid state

lasers have been successful integrated in Doppler lidar designs s-r. The targets for Dopper

lidar are small atmospheric aerosol particles. Doppler lidar data can be the return from a

single pulse or a collection of many pulses along the same line of sight. The advantages

of multiple pulse has been discussed by Rye and Hardesty s, and Frehlich and Yadlowski 9.

Coherent Doppler lidar data is used to estimate the radial velocity of the targets using

various mean-frequency estimators s-l_.

The actual measurement quantity is related to the statistics of the random wind field over

the sensing volume of the pulse. The effects of the pulse volume averaging for Doppler radar

has been investigated by Doviak and Zrnic 16. The estimated Doppler frequency is defined

in terms of the spectrum of the signal. Doppler radar data is generated by transmitting

many pulses and sampling the returns at fixed sampling interval Ts[sec], which corresponds



to sampling the same spatial volume defined by the pulse at equally spaced time intervals.

For this case, the statistics of the data are determined by the time evolution of the sensing

volume of the pulse, and the spectrum is a well defined quantity. For coherent Doppler lidar,

the data is generated from a single pulse as it travels through the atmosphere. The sensing

volume of the Doppler lidar data is determined by the distance the pulse travels in the finite

observation time of each estimate T = MTs[sec], where M is the total number of data

points per estimate. The spectrum is not well defined and the Doppler frequency is related

to the statistics of the wind field over the sensing volume of the single pulse. The signal

parameters are then related to the wind fields and lidar system parameters in a different

fashion than for the Doppler radar. This connection will be derived to clarify the meaning

of coherent Doppler lidar measurements and pave the way for more reliable estimators of

the signal parameters.

The statistical description of coherent Doppler lidar data from aerosol targets has been

shown to be well represented as a zero mean Gaussian random process. It is a common

practice to follow the tradition of Doppler radar and convert the real signal to the complex

analytical signal using a quadrature receiver 16-1a or digital signal processing 19'2°. This gen-

erates complex data with desirable statistical properties that simplify the calculation of the

Cramer-Rao Bound lsA6'21 (the ideal performance of estimators of the signal parameters) and

the development of efficient estimators of the signal parameters. Since the data is a Ganssian

random process, the signal covariance provides a complete statistical description of the data.

The signal covariance is derived for a general coherent Doppler lidar including random wind

fields and wind shear. The derivation follows the analyses of Frehlich and Kavaya 22 for the

performance of coherent laser radar for general atmospheric refractive turbulence.

2. Coherent Doppler Lidar Signal

A coherent Doppler lidar can be represented by the transmitter aperture function WT(_),

the transmitter laser field incident on the transmitter aperture EL(_, O, t)[(Wm-_)I/2], the

receiver aperture function Wn(q), and the Local Oscillator (LO) field incident on the receiver

aperture ELO(q,O)[(Wm-2)I/2]. Here, t[sec] denotes time and d[m] and _7[m] denote the

transverse two-dimensional vectors of the transmitter and receiver plane, respectively. The

field of the transmitter laser pulse with frequency fL[Hz] is written as

EL(a,O,t) = ULAL(t)eL(_,O)exp(2_ri fLt) (1)

where Ut.[J] is the laser pulse energy, eL(t_, 0)[m -_] is the normalized spatial field which is

assumed independent of time t (the spatial mode of the laser pulse is independent of time)

and

AL(t) = J_/2(t)exp[2rifjfc(t')dt'] (2)

is the normalized complex amplitude of the pulse where fc(t')[Hz] is the frequency chirp of

the transmitted pulse and

f_,o IAL(t)I 2dt = 1 (3)
O0



The LO field in the receiver plane with frequency fLo[Hz] is given by

ELO(¢, O) 1/2 .= PLO eLo(V,O) exp(2rifmot) (4)

where PLo[W] is the LO power,eLO(q,O)[m -1] is the normalized spatial field which is as-

sumed independent of time t, and

/_oo leL,LO(a,O)l d_ --__ 1 (_)
O0

The coherent Doppler lidar typically operates under the ideal condition of quantum limited

detection, i.e., the signal noise is dominated by the shot noise of the LO field. The effects of

extra additive system noise is a simple extension. We will assume that the detector quantum

efficiency rlQ[electrons/photon ] is uniform over the surface of the detector and that all the

LO power is collected by the detector.

For Doppler lidar measurements of the atmosphere, the backscattered field is a zero-

mean Gaussian random process because it is the superposition of the backscattered fields

from many random aerosol particles. The doppler lidar signal is also a zero-mean Gaussian

random process because it is a linear function of the backscattered field. It is convenient to

normalize the signal by the standard deviation of the noise signal and employ the complex

representation (Appendix A)

Z(t) = S(t) + N(t) = Re[z(t)] (6)

where S(t) is the normalized Doppler lidar IF current signal from the backscattered field

and N(t) is the normalized additive detector noise. The statistical description of a real or

complex zero-mean Gaussian random process _(t) is given by the covariance function

B_(t,,t2) = (_(t,)_(t2)) (7)

For complex random processes z(t), further simplification results if

(z(t,)z(t2)>=0 (8)

Then, the covariance of the real random process Z(t) is related to the covariance of the

complex random process z(t) by

1

Bz(t,,t ) = 7Re[S,(t,,t2)]= R4R,(tl,t )] (9)

where Re[z] denotes the real part of the complex variable z. The function Rz(t,,t2) =

Bz(tl, t2)/2 is commonly used 9'**'15-.s'2. for analysis of Gaussian random processes because
of mathematical convenience.

For Doppler lidar, the signal S(t) is statistically independent of the noise N(t) and

Bz(tl, t2) = Bs(t,, t2) + BN(tl, t2) (lO)

The noise N(t) is usually well described as a white-noise process over the receiver bandwidth

B[Hz]. For the normalized Doppler lidar signal (Appendix A),



1
Bs(t,t) = _Bo(t,t)= no(t,t)= SNR(t) (ll)

where SNR is the coherent lidar signal-to-noise ratio with respect to the appropriate en-
semble average. The Doppler lidar signal is typically uncorrelated from shot to shot because

the aerosol targets move more than a wavelength between shots, which results in random

phases for the backscattered signal from shot to shot. The ensemble average over the random

phases of the backscattered fields from the aerosol particles produces (Appendix A)

T]QUL foo foo . .

Ra(tl,t2)---- "_ffJo J-e_ AL(tl 2Z)A_(t2 z 2 - -_ _ 2c)K (p,z)J3(p,z)lQ(p,z)[ 2

exp{2ri(tx - t2)[Af- 2v,(_,z)/A]}d_dz (12)

where h = 6.626x10-a4[Js] is Planck's constant, v[gz] is the optical frequency, c[m/sec] is

the speed of light in a homogenous atmosphere, K(I_, z) is the one-way irradiance extinction,

_(_, z)[rn-lsr -1 is the aerosol backscatter coefficient, v_(15, z) is the radial component of the

velocity of the aerosol particles at coordinate (_, z), Af = fL--fLO is the frequency difference

between the transmitted field and the LO field, and the lidar system function Q(l _, z)[m -1]
is given by

(13)

where G(15; if, z)[m -_] is the Green's function for propagating the field from the transmitter

coordinate (if, 0) to the aerosol coordinate (15, z). For Doppler lid°r, the complex signal z(t)

also satisfies Eq. (8) (see Appendix A) which facilitates data analysis and the development

of estimation algorithms. The functions Rz(t,, t2) and Bz(tl, t_) are hermitian function, i.e.,

R_(t,,t2)- Rz(t2, tl) (14)

With a high pulse rate Doppler lidar, many shots can be transmitted while the the ran-

dom Green's function G(I_; if, z) (which is usually determined by the atmospheric refractive

turbulence) and the random radial velocity fluctuations Vr(l_, z) are essentially constant. For

example, a surface layer lidar can transmit 10,000 shot per second before the signals from

adjacent pulses interfere. Doppler lidar has the potential to investigate the statistics of wind
fluctuations and refractive turbulence.

The ensemble average over refractive turbulence produce

_QUL [°° f°°AL(t ' _ 2z/c)A.L(t 2 _ 2z/c)O(_,z)R , ( t x, t 2) = "h-_ff Jo J- oo

exp {2ri(t, - t2)[A f -- 2v, (15, z)/A] } d_dz (15)

where O(_,z)[m -3] is the gain density

O(_,z) = K2(_,z)j3(_,z)c(_,z), (16)

and c(t_, z)[m -2] is the coherent responsivity density 22 of the coherent Doppler lid°r, i.e.,

--[Q(p,z)l • (17)



For many applications, the effects of refractive turbulence are negligible and

G(15;t_,z) = Gl(_;a,z) = f_rz exp - 5) 2 (18)[ 2z

where GI(_; _, z) is the free space Green's function and k = 2r/A[m-'] is the wavenumber

of the laser field. The fluctuations of the radial component of the wind field v,(15, z), the

atmospheric extinction K(15, z), and the backscatter coefficient 8(15, z), are the remaining

random quantities.

Churnside and Yura 23 considered the signal covariance as an ensemble average over

v,.(_,z) by assuming vr(15, z) was a Gaussian random variable with mean value _z and

2 Then, Eq. (15) becomeswriance a z.

_QUL [_ [_ AL( t, -- 2z / c)A'L( t2 -- 2z /c)O(15, z)
R,(tl,t2) = -ff_Jo J-¢¢

exp [2ri(tl - t_)(A f - 2v,/A) - 8_r2a_/A2] d15dz (19)

For typical lidar experiments, the analysis of Doppler lidar data is restricted to time intervals

much smaller than the temporal scale of vr(15, z). In many cases, parameter estimation is

performed using data from a single shot and an ensemble average over the random wind

v,(15, z) is not appropriate. However, if the sensing volume of the pulse is much larger than

the spatial scale of the fluctuations of v,(15, z), the signal covariance has the form of Eq.

(19). [See Fig. 6].

A typical Doppler lidar has a narrow beam compared to the dimensions of the sensing

volume in the transmit direction z. Then, the function O(15, z) behaves like a delta function

in Eq. (15) and

R,(tl,t2) - rlQUL "jf°H(z)AL(t 1 _ 2z/c)A'L(t2 -- 2z/c)hvB

exp {2ri(tl - t_)[Af - 2v_(O,z)/A]} dz (20)

where the system gain H(z)[m-'] is

H(z) = K2(O,z)_(O,z)C(z) (21)

and

FC(z) = c(15,z)d15 (22)
CO

is the coherent responsivity 22 of the coherent Doppler lidar.

The center of a range gate for Doppler lidar measurements is defined by

Zo = cto/2 (23)

and the total observation interval corresponding to this range gate is (to - T/2, to + T/2).

If _(p,z), K(15, z), v_(15, z), and c(15, z) are constant over the sensing volume of this range

gate, we have for all (tl, t2) in the observation interval



R.(h,t2) = R,(r) = SNR(zo)exp(2rirf,,) f_AL(t)A*L(t- r)dt

where

_QCUL H(zo)
SNR(zo)- 2hub

(24)

(25)

is the SNR for a pulse centered at range z0, the mean frequency f,_ [Hz] of the Doppler lidar

signal is defined as

f,_ = Af - 2vr(O, zo)/,_ (26)

r = t_ - t2[aec], and the limits of integration have been extended to infinity. The signals z(t)

and Z(t) are stationary Gaussian processes over the observation interval (to - T/2, to + T/2),

i.e., the joint probability density function is only a function of the time difference r. The

signal spectrum for a stationary real signal Z(t) is defined as

¢z(f) = /'_ Bz( v ) exp(- 2rir f )dr (27)

or

¢z(f) = SNR(zo)f_(f - f,_) (28)

where

12(f) = If__ooAL(t)exp(-2ri ft)dt[ 2 (29)

is the spectrum of the transmitted pulse. For a stationary complex signal z(t), the spectrum

is defined the same way as for a real signal with Bz(r) replaced with R,(r) [see Eq. (9)].

The signal spectrum for aerosol targets is also the same as the signal spectrum from a rigid

or diffuse hard target.

For a Gaussian pulse with 1/e intensity radius a[sec] and linear frequency chirp ¢[sec -2]

AL(t) - r,/;a,/2 exp -_-_2 + tier2 (30)

and

R.(r) = SNR(zo)exp(2rif,_ - r2/rp 2) (31)

where the correlation time of the lidar signal re[sec] is given by

1 1 1
.... (32)
rp 2 -- rA2 + 7.6.2

where ra[sec] is the correlation time due to the amplitude profile of the pulse, i.e.,

rA - 2a (33)

and rc[sec]isthe correlationtime due to the frequency chirp,i.e.,

1 (34)



3. Effects of Wind Shear

Doppler lidar data permits estimation of the radial component of the wind field V_(l_, z)

with a single shot. For short pulse duration, the random fluctuations of V,(l 5,z) can be

approximated by the first two terms of it's Taylor series expansion in z about the center of

the range gate z0, i.e.,

vr(15, z) = v_(15, Zo) + g(15, Zo)(Z- Zo) (35)

where g(15, Zo)[sec -_] is the wind shear of the radial component of the velocity at (15, z0), i.e.,

g(15'_) - Oz (36)

The range dependent system gain O(15, z) is approximated by the first two terms of it's

Taylor series expansion in z, i.e.,

0(15, z) = O(15, z0)[1 + b(15, Zo)(Z- z0)] (37)

where b(15, z)[m -_] is the normalized gradient of the system gain, i.e.,

b(_,z) = 1 O0(_,z) (38)
0(15,z) Oz

When these approximations are valid and for a Gaussian pulse defined by Eq. (30)

R.(., r) = ¢qcUL[_2hub J-oo 0(15'z°)[1 + rpb(15'z°)(#- a to ir_) ]

[ 41ri ... 2i(#-to) r r2]exp 2riAfr _--v,(p, zo)r- a rws _ d15

where #[sec] is the centroid of tl and t2,

= (tl + t2)/2,

(39)

(40)

rws = 2rrpg(l_, z0)

is the correlation time due to wind shear,

rp = ca/2

is a measure of the range resolution of the pulse,

1 1 1
-- .}. --

TT 2 7"12 T A 2

(41)

(42)

(43)

1 1 1

7"1 T C 7"WS
(44)



Note that the signal covariancedependson the centroid variable # and is therefore non-

stationary. For a Doppler lidar with a narrow beam compared to the dimensions of the

range gate [see Eq. (20)]

-to i_)]exp[2rif,,,r_2i(#-to) r f__T_] (45)R,(p, r) = SNR(zo)[1 + 7( g-- a a rws

where

= b(O, = [0(o, + - 0(o,  o)1/0(o, (46)

is the fractional change of the gain O(0, z) over the range resolution re at z0, if the linear

approximation of Eqs. (35) and (37) are valid.
The effects of wind shear become important when the correlation time due to wind shear

rws is less than the correlation time due to the pulse amplitude profile rA, i.e.,

rAIrws = 2_rca2g(0, zo)/_ > 1 (47)

rA/rws = 0.188 for a wind shear of 0.001 sec -1 (10 m/sec per Km), A = 10#m, and

a = lpsec.

The effects of wind shear with constant SNR [constant H(z)] over the observation interval

are shown in Fig. 1. The wind shear produces a rapid decorrelation of the lidar signal, which

appears as a damped oscillating signal as the centroid of the observation points # deviate

from the center of the observation interval to. This reflects the change in the Doppler shift

of the signal from aerosol particles with a different velocity than the instantaneous velocity

vr(0, z0) at the center of the range gate. The effects of a gradient in the SNR [H(z)] is shown

in Fig. 2. The gradient produces an amplitude change in addition to the effects of wind
shear.

4. Effects of Wind Turbulence

Atmospheric wind fields are characterized by random fluctuations in space and time. For

many cases, the statistics of the wind fields are well characterized by universal functions of

basic parameters. For Doppler radar the effects of the random fluctuations of the wind field

over the sensing volume has been discussed by Doviak and Zrnic 16. For Doppler lidar, the

situation is complicated because estimates of the velocity are computed for a single shot or

a few shots. During the total observation period, the velocity changes little compared to the

temporal scale of velocity flucutations. Ensemble averages of the Doppler lidar signal over

the atmospehric velocity fluctuations were considered by Churnside and Yura 2a. The effects

of spatial variations of the backscatter coefficient over the sensing volume of the pulse were

investigated by Rye 24 using simulations.

The covariance of the Doppler lidar signal for a single shot is given by Eq. (15), which

can be written as

71QUL
f_ f_:¢ AL(tl -- 2z/c)A*L(t2 - 2z/c)O(_,z)R,(tl,t2)- huB__ __

exp [2_rif_r - --_--Avr(p,4ri"._. z)r] d_dz (48)



where

Av,(_,Z, Zo) = v,(_,z) -- v,(O, zo) (49)

is the difference of the radial component of the velocity compared to v,(0, z0).

The mean frequency fm is a random variable because the wind field is random. The

estimation error for estimates of the mean frequency f,_ using data from a single shot is

difficult to predict because the signal statistics depend on the random functions Av,(15, z, z0)

and O(15, z). It may be possible to estimate the random functions Av,(15, Z, Zo) and O(15, z)

as well as the other signal parameters if many shots of data can be collected during the

temporal scale of these fluctuations. If this approach is not possible, then an ensemble

average over the random functions Av,(15, z, zo) and 0(15, z) is required to develop and

analyze estimation algorithms for the signal parameters 17.

For well behaved atmospheric conditions, the velocity difference Av,(15, z, z0) is approx-

imately a zero mean Gaussian random variable. Performing the ensemble average over this

random variable [< exp(i_) = exp(- < _2 >/2) for a zero-mean Gaussian random variable

_] produces

R,(t,,t2) = ,TqUn[°°[°°AL(t 1 _ 2z/c)A.L(t2 _ 2z/c)O(_,z)
-h--_ Jo J-oo

[ 8_r2r2 ]exp 2rirf,,, A2 D,(15, Z, Zo) d15dz (50)

where

D,(_,Z, Zo) = (Av,(_,Z, Zo) 2) (51)

is the structure function of the fluctuations of the radial component of the velocity field. Note

that the signal covariance depends on the centroid variable _t and is therefore non-stationary.

For a narrow beam such that the function O(15, z) dominates the 15 integration

T1QUL I'°°_ i, " t
R,(tl,t2) - _ Jo ,_Lt_l -- 2z/C)AL( 2 -- 2z/c)H(z)

[[2rrirfm 8tar2 " *]exp
_-_ O,(O, z, Zo)] dz

(52)

For a narrow beam and a short pulse such that H(z) is constant over the sensing range of

the pulse,

_0 °°
Ro(tl,t2) = SNR(zo) AL(tl -- 2z/c)A*L(t= -- 2z/c)

[ S'  r2 ]exp 2_rirf,, _2 D,(0, z, z0) dz
(53)

When the statistics of the velocity fields over the sensing volume of the pulse are locally

stationary and isotropic 2s

D,(15, Z, Zo) = C, e2/3(zo)r2/a[(z - zo) = + 4p2/a]/r 2 (54)



where Cu _ 2 is the Kolmogorov constant, e[m_s -3] is the energy dissipation rate, and

r _ = (z - z0) _ + p2. For a Gaussian transmitted pulse with linear frequency chirp [Eq. (30)]

"°<"< - +:o)27rl/lhuB

exp {-[(g - to)/a - ¢]_ + 2_'i¢a[(/_ - to)/a - _]r - x-4/a(_ 2 + 4q2/3)r2/rs 2) dCtd _ (55)

where x _ = (_ + q2, rp(_ = z - z0, rt,(_ = 15, and the correlation time due to turbulence

rE[sec] is given by

TE 2

For a coherent Doppler lidar with a Gaussian transmitted spatial profile 22

CCz)
O(rp4, Z) - 7ra_(z) expl-rp2q21a_(z)]

where as(z) is the 1/e intensity radius of the transmitted beam at range z.

For a narrow beam, the integration over (_ can be performed and

_#QULcrp 2 /
Ro(U,r) = [

exp k2_rirfm -

(56)

(57)

(58)

For a short pulse such that C(rp¢ + Zo) is constant over the ¢ integration,

R,(l_,r) - SNR(z°) ( r2 )ri/2 exp 21rirf, n ra 1

The effects of wind turbulence become important when the correlation time due to tur-

bulence rE becomes less than the correlation time due to the pulse amplitude profile rA, i.e.,

when

ralrE = 47rC_12a(erp)ilalA > 1 (60)

Then "l'A/r E = 2.88 forFor typical stable boundary layer turbulence, e = O.Olm2/sec a.

)_ = 10_um, and a = ll_sec.

The effects of wind turbulence and the finite transverse dimensions of the beam are

shown in Fig. 3. The decrease in the correlation scale due to turbulence is more pronounced

for a wide beam (aa > r_,) because of the increase in the Doppler shifts from the random
fluctuations of the wind in the transverse dimensions.

The effects of wind turbulence for the common case of a narrow transmitted beam com-

pared to the range resolution (as < rp) is shown if Fig. 4. When rE < rA, the signal
covariance is reduced due to the wind turbulence.
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For typical surfacelayer measurements,the statistical description of the velocity fluc-
tuations must include the spatial scaleof the turbulent wind field (sometimescalled the
outer-scaleof turbulence) that is proportional to zH[m], the height above the surface. The

spectra of velocity fluctuations satisfy universal scaling functions. For a horizontal propaga-

tion direction along the mean velocity, the universal spectrum of velocity flucutations in the

direction of the mean velocity results in a universal, locally stationary, structure function of

velocity fluctuations. For neutral stability 2s

Dr(O, zo + r, z0) = 2a_A(r/z,) (61)

where ar [m/sec] is the standard deviation of the radial component of the velocity flucutations
and the universal function

A(x)= (, x)2/311+ (,.x),,]-V(3.) (62)

where a = 0.26278 and p = 1.1948. The function A(x) is shown in Fig. 5. For small r, Eq.

(61) is equal to Eq. (54) with 1_ = 0 and

= (63)

Substituting Eqs. (30) and (61) into Eq. (53) produces

Rs(I_,r)- SNR(z°) ( r2 )lrl/2 exp 2rrirfm _Aa

(64)

where

1
--= 16_r_a_/A 2 (65)
TH 2

There are two limiting cases of Eq. (64). When the sensing volume of the pulse rp is less

than the outer scale of turbulence (L0 _ ZH) the integration in Eq. (64) is dominated by the

power law region of h(x) and Eq. (64) is equal to Eq. (59). When rp is much larger than

zn, then h(rp(/ztt) _ 1 and a result similar to Eq. (19) is produced. If the mean frequency

f,, is defined using the average radial velocity V, instead of the instantaneous radial velocity

vr(O ,Zo), then Eq. (19)is produced when rp >> ZH because Dr(_,Z, Zo) --* a_ instead of

2a_ [see Eq. (61)].

The signal covariance Eq. (64) is shown in Fig. 6 for a typical nightime condition with

a horizontal path at height ZH = 2m, a velocity fluctuation a_ = 0.hm/sec and operating

wavelengths of 2/_m and 10/_m. This corresponds to an energy dissipation rate of e =

O.O164rn2/s 3. For these parameters, the correlation scale for turbulence rH assuming rp ;>_

zn is 1.591_sec for the 10/_rn lidar and 0.318/_sec for the 2/_m lidar. For this regime, the

signal covariance is determined by the transmitted pulse when rA < rH.

11



5. Summary

The signal covariance for coherent Doppler lidar data is derived for general conditions for

both real and complex data. The covariance is defined with respect to a given ensemble

average. The most general case is the ensemble average over the random phases of the

backscattered fields from the aerosol particles [Eq. (12)]. The covariance parameters are

a function of the instantaneous wind field and atmospheric conditions. In this case, the

covariance can be estimated with multiple shots over a time interval that is less than the

temporal scale of the fluctuations in the atmosphere. The next level of ensemble average

is over the atmospheric refractive turbulence [see Eq. (15)]. In many cases, the effects of

refractive turbulence are negligible and Eq. (18) is valid. Under the ideal limit of uniform

velocity, atmospheric parameters, and system parameters over the sensing volume of the

pulse, the Doppler lidar signal is stationary and determined by the transmitted pulse Eqs.

(24), (28), and (29). When there is a linear wind shear and linear system gain over the sensing

volume of the pulse, the signal covariance is non-stationary (depends on/_) and given by

Eq. (39) and for a narrow lidar beam by Eq. (45). The signal parameters are expressed in

terms of the instantaneous atmospheric variables and lidar system parameters. The mean

frequency f,,, is defined in terms of the instantaneous radial velocity in the center of the range

gate of interest for a single shot. This permits analysis and development of more efficient

estimation algorithms which are valid when the pulse sensing volume is small compared to

the variations of the instantaneous atmospheric variables. The coherent lidar signal is not

stationary over the observation interval and spectral domain estimators will be less efficient

for this case because they assume stationary data. When the atmospheric parameters are

unable to be modeled over the observation interval (e.g., velocity fluctuations are not a

linear function of space over the sensing volume of the pulse), the analysis and development

of estimation algorithms requires the ensemble average over the unknown parameters TM. The

signal covariance for this case with general statistics for the velocity fluctuations is given by

Eqs. (50), (52), and (53). For isotropic and homogeneous wind fluctuations described by the

Kolmogorov turbulence spectrum over the sensing volume of the pulse, the signal covariance

is given by Eqs. (50), (52), and (53) with Eq. (54). and for a Gaussian pulse defined by Eq.

(30), the correlation scale is given by re Eq. (56). When the sensing volume of the pulse

is much larger than L0, then Eqs. (50), (52), and (53) are valid with D,.(_,Z, Zo) = 2a_

is valid and the correlation time is given by rH Eq. (65). For intermediate regimes, the

universal description of the velocity structure function is required [see Eq. (61)] For the case

of horizontal propagation in the atmospheric surface layer and typical nightime conditions,

the correlation time due to the effects of turbulence are less than 2#see for a 10#rn lidar

and less than 0.2_sec for a 2 micron lidar. The correlation time will be reduced even more

for typical daytime unstable convective conditions. For wind shear and wind turbulence,

the correlation time is proportional to the operating wavelength A [see Eqs. (41), (56), (65)]

and the critical pulse length where the effects of the wind fluctuations dominate over the

contribution of the pulse is also proportional to A.
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Appendix A: Coherent Doppler Lidar Signals

The total coherent or heterodyne Doppler lidar signal iT(t)[A] is the sum of the Doppler IF

signal current is(t)[A] and the detector noise current iN(t)[A] which is conveniently written

in complex notation as iT(t) = Re[y(t)], iN(t) = Re[u(t)], where

2Goe f ,., ,. + ..

y(t) = u(t) + -_v JD rlQ(w)_s(w'L't)E'L°(_'L)exp(2rriAft + iOs)dffr (A1)

Go is the dimensionless amplifier gain, e = 1.602 x lO-tg[C/electron] is the electronic

charge, r/o(_)[electrons/photon] is the detector quantum efficiency function on the detector

surface, Es(fr, L, t) is the backscattered field on the detector surface, ELO(¢', L) is the LO

field on the detector surface, 0s[rad] is the random phase of the backscattered field compared

to the LO field, Af[Hz], is the frequency difference between the transmitted and LO field,

_[m] is the transverse coordinate on the detector surface and d_ denotes two-dimensional

integration over the detector surface. For ideal optical systems and for a infinite uniform

detector, the fields on the detector can be represented in terms of the fields in the plane of

the receiver optics, i.e.,

Fy(t) = u(t) + Es(¢,O,t)E_o(V,O)Wn(¢)exp(2riA ft + lOs)dr
O0

(A2)

where Es(_, 0, t) and ELO(¢, 0) are the backscattered field and LO field in the receiver plane.

If the signal noise is dominated by the shot noise generated by the local oscillator field

(quantum limited detection), the average noise power is

i2N(t) 1 . 2Gn2e2BTloPLo/(hv)=  u(t)u (t) = (A3)

where B[Hz] is the noise bandwidth. It is convenient to normalize the signals by the rms of

the noise current, i.e.,

z(t) = y(t)/i2N(t) '/2 = s(t) + n(t). (A4)

The backscattered field from a point scatterer at coordinate (15, z) with scattering cross

section trs is

Es(V,O,t) = _aV2K(15, z)IS EL(ff, O,t - 2z/c)WT(ff)G(15; if, z)

G(15; _7, z)exp[i0(15, z) - 4ritvr(15, z) /,_ldG (A5)

where 0(15, z) is the random phase of the backscattered field. The total backscattered

field is the sum of all the backscattered fields from the aerosol particles illuminated by

13



the transmitted field. Substituting the total backscatteredfield into Eqs. (A2), (A4), (9),
(1), (4), performing the ensembleaverageover the random phasesO(O,z) using the iden-

tity exp[i(O(_,z,) + 0(15, z2)] = 0, and converting the summation over aerosol particles to

integration 2z produces Eq. (12). The same procedure produces Eq. (8).
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Figure 1

Fig. 1. Effects of wind shear on the normalized signai covariance [Eqs. (9), (30), (45),

7 =fm = _b=0] as a function of r/ra with constant SNR over the observation intervaJ and

(--)/_=t0, no wind shear, ( .... ) /*-t0=aandrA=rws;(---)/_-to=2,rand_'a =TWS;(-.

• ) /*- to = a and rA = 2rws; and (..- .. -)/_- to = 2a and rA = 2rWS.
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Figure 2

Fig. 2. Effects of wind shear and gradients in SNR over the observation interval on the normalized

signal covariance [Eqs. (9), (30), (45), fm= _=0] as a function of r/rA compared with constant

SNR over the observation interval and no wind shear (___). The curves represent ( .... ) p- to -- _r,

rA = 7"WS, and 3' = 0.2; (- - -) p - to = a, _'A = rWS, and 7 = 0.4; (-. - .) p - to = 2o', rA = 2rws,

and 7 = 0; (.. - .. -) _ - to = 2_r, rA = 2rWS, and 7 = 0.2; and (..- - ..- -)/_ - to = 2a, rA = 2rws,
and 7 = 0.4.
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r_gure J

Fig. 3. Effects of the finite transverse dimensions of a lldar beam and wind turbulence on the

normalized signal covariance [Eqs. (9), (30), (55), f,_ = _=0] as a function of r/ra with constant

SNR. over the observation interval and case a) # = to with (__) no wind turbulence; (...) r/_ = rA/2,

and as << rp; (- -) rE = ra/2, and as = rp/2; (. - . -) rE = ra/2, and aB = rp; ( .... .)

rE = rA/2, and aB = 2re; and case b) the same as case a) but with # - to = _r.

m
0.0

m

0.0
0.0 0.2 0.4 0.6 1.0

a)

b)

1.2 1.4



Figure 4

Fig. 4. Effects of wind turbulence on the normalized signal covariance [Eqs. (9), (30),

(59),fro -- _b=0 ] as a function of v/vA with constant SNR over the observation interval and

narrow transmitted beam compared to the range resolution (orb << rp) for case a) # = to with

(__) no wind turbulence; (...) rE = rA/2; (- -) rE = TA; and case b) is the same as case a) but

with p - to = a.
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Figure 5

Fig. 5. Normalized structure function of velocity fluctuations in the direction of the mean velocity

A(x) vs x for neutral stability in the atmospheric surface layer.
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P_gure b

Fig.6. Normalized signalcovariance[Eqs. (9),(30),(64),f,n = _b=0 ]as a functionof r for

= toand a lOpm and 2pro lidarfora horizontalpropagationpath at a heightZH = 2m in the

atmosphericsurfacelayerunder neutralstabilitywith a standard deviationofthe raxiialcomponent

of velocityfluctuationsaT = 0.Srn/sec.The correlationscaleassuming the lidarpulsedominates

the signalstatisticsrA = 2a is(__) 0.2/_8ec,(...)0.41_8ec,(--) l.Ol_sec,(.- .-)2.0/_8ec,(-..- ..)
4.01_sec,and (--. -- .)10.0#sec.
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